Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-08-11T17:34:53Z
dc.date.available 2022-08-11T17:34:53Z
dc.date.issued 2021-08-30
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/140442
dc.description.abstract Let Ω be a smooth, bounded, convex domain in Rn and let Λk be a finite subset of Ω. We find necessary geometric conditions for Λk to be interpolating for the space of multivariate polynomials of degree at most k. Our results are asymptotic in k. The density conditions obtained match precisely the necessary geometric conditions that sampling sets are known to satisfy and are expressed in terms of the equilibrium potential of the convex set. Moreover we prove that in the particular case of the unit ball, for k large enough, there are no bases of orthogonal reproducing kernels in the space of polynomials of degree at most k. en
dc.format.extent 1-19 es
dc.language en es
dc.subject Interpolating sequences es
dc.subject Multivariate polynomials es
dc.subject Reproducing kernels es
dc.title Necessary Conditions for Interpolation by Multivariate Polynomials en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s40315-021-00410-8 es
sedici.identifier.issn 1617-9447 es
sedici.identifier.issn 2195-3724 es
sedici.creator.person Antezana, Jorge Abel es
sedici.creator.person Marzo, Jordi es
sedici.creator.person Ortega Cerdà, Joaquim es
sedici.subject.materias Matemática es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.workflowEdited true es
sedici.relation.journalTitle Computational Methods and Function Theory es
sedici.relation.journalVolumeAndIssue vol. 21 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)