Busque entre los 166448 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2022-10-13T16:18:56Z | |
dc.date.available | 2022-10-13T16:18:56Z | |
dc.date.issued | 2021-09-15 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/143749 | |
dc.description.abstract | We give a simple and unified proof showing that the unrestricted wreath product of a weakly sofic, sofic, linear sofic, or hyperlinear group by an amenable group is weakly sofic, sofic, linear sofic, or hyperlinear, respectively. By means of the Kaloujnine-Krasner theorem, this implies that group extensions with amenable quotients preserve the four aforementioned metric approximation properties. We also discuss the case of co-amenable groups. | en |
dc.language | en | es |
dc.subject | Unrestricted wreath products | es |
dc.subject | Sofic groups | es |
dc.subject | Linear sofic groups | es |
dc.subject | Weakly sofic groups | es |
dc.subject | Hyperlinear groups | es |
dc.subject | Amenable groups | es |
dc.title | Metric approximations of unrestricted wreath products when the acting group is amenable | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1080/00927872.2021.1976790 | es |
sedici.identifier.issn | 0092-7872 | es |
sedici.identifier.issn | 1532-4125 | es |
sedici.creator.person | Brude, Javier Eugenio | es |
sedici.creator.person | Sasyk, Román | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Preprint | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Communications in Algebra | es |
sedici.relation.journalVolumeAndIssue | vol. 50, no. 3 | es |