Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-10-13T16:18:56Z
dc.date.available 2022-10-13T16:18:56Z
dc.date.issued 2021-09-15
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/143749
dc.description.abstract We give a simple and unified proof showing that the unrestricted wreath product of a weakly sofic, sofic, linear sofic, or hyperlinear group by an amenable group is weakly sofic, sofic, linear sofic, or hyperlinear, respectively. By means of the Kaloujnine-Krasner theorem, this implies that group extensions with amenable quotients preserve the four aforementioned metric approximation properties. We also discuss the case of co-amenable groups. en
dc.language en es
dc.subject Unrestricted wreath products es
dc.subject Sofic groups es
dc.subject Linear sofic groups es
dc.subject Weakly sofic groups es
dc.subject Hyperlinear groups es
dc.subject Amenable groups es
dc.title Metric approximations of unrestricted wreath products when the acting group is amenable en
dc.type Articulo es
sedici.identifier.other doi:10.1080/00927872.2021.1976790 es
sedici.identifier.issn 0092-7872 es
sedici.identifier.issn 1532-4125 es
sedici.creator.person Brude, Javier Eugenio es
sedici.creator.person Sasyk, Román es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Communications in Algebra es
sedici.relation.journalVolumeAndIssue vol. 50, no. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)