La actividad de planificación de clases en instituciones universitarias requiere un importante esfuerzo de organización debido a su naturaleza combinatoria. Dicha complejidad se ha visto incrementada con la adopción de distintas modalidades de dictado, debidas a las limitaciones de a la presencialidad tras la irrupción del SARS-COV-2 a nivel global.
Si bien, en la literatura académica se encuentra una amplia gama de trabajos orientados a resolver este tipo de problemas, denominado como UCTP (University Course Time Tabling Problem), no se ha encontrado referencias a alguno que considere simultáneamente las distintas modalidades de dictado de clases que se utilizan hoy en día. Dentro de los trabajos publicados, se destacan los modelos basados en la Programación Mixto Entero Lineal (MILP), debido a su versatilidad y adaptabilidad a distintas situaciones.
En el presente trabajo, se desarrolla un modelo de tipo MILP adaptado a la planificación de clases en ámbitos universitarios donde se deben implementar diferentes modalidades de dictado debido a limitaciones en el nivel de presencialidad.
Fueron ensayados dos enfoques de solución. En primera instancia, se buscó resolver el problema original mediante la utilización directa de un solucionador MIP comercial (IBM-CPLEX). Mientras que, en segundo lugar, se implementó un método heurístico donde se realiza una descomposición del proceso de solución en dos etapas, a saber: (1) Planificación de los horarios de clases, (2) Planificación de los espacios áulicos. Para el caso de estudio, el modelo consta de 801 mil restricciones y 473 mil variables (entre binarias y continuas).
Al resolver el problema original se ha finalizado la búsqueda por límite de tiempo (11 h), obteniéndose una función objetivo un 1% mayor a la obtenida mediante el enfoque de descomposición y un 3% más de alumnos presenciales. Sin embargo, el tiempo utilizado para hallar la solución mediante el enfoque de descomposición representa menos del 0,4% del utilizado para resolver el problema original.