En el marco del filtrado Bayesiano, se presenta un modelo en el cual el proceso de medición y el estado siguiente son condicionalmente dependientes, dado el conjunto de observaciones pasadas y el estado actual. Además se busca la distribución de predicción para este modelo, y la distribución de filtrado se halla con una simple actualización a partir de la de predicción. La distribución requerida se aproxima utilizando el muestreo secuencial de importancia, y la distribución queda representada por un conjunto de muestras aleatorias, que son obtenidas a partir de una función de importancia, y se le asigna a las mismas un peso de acuerdo a su relevancia.