Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-10-17T12:50:15Z
dc.date.available 2023-10-17T12:50:15Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/158910
dc.description.abstract The prediction of normalized vegetation indices in coffee crops using multispectral images obtained by aerial mapping aims to generate a technological strategy using aerial mapping employing drones (RPAS) to predict normalized vegetation index (ENDVI) in coffee crops. During the research process, reference is made to the ENDVI according to the multispectral footprints generated by the different nutrients on the plants in the production stage of the coffee crop, using RPAS for the realization of aerial mapping works in precision agriculture. This reflects the importance of implementing technological tools to improve the planning of agricultural activities, predict damage and decide in situations that affect the development of coffee crops. This study took multispectral images of coffee crops from aerial mapping in the coffee plantations of the Popayan plateau region. It will also analyze the health status of the plants using a chlorophyll meter. From this comparative analysis of the different ENDVI, it is possible to define management alternatives to improve production. However, the images will be captured with unique cameras incorporated in the RPAS, allowing the identification of the variations of the lots and coffee plants in the formative stage of their phenological development, the absorption of nutrients, and the water stress of the crop. Finally, some strategies for integrating expert systems in aerial mapping are proposed. en
dc.format.extent 131-136 es
dc.language en es
dc.subject Aerial mapping es
dc.subject Precision agriculture es
dc.subject Spectral index es
dc.title Proposal of a system based on direct and indirect techniques and their correlation by chlorophyll quantification en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2303-5 es
sedici.creator.person Vivas Fernández, Kevin es
sedici.creator.person Muñoz Reyes, Jhon Álvaro es
sedici.creator.person Ruiz Sarzosa, Saúl Eduardo es
sedici.creator.person Solis Pino, Andrés Felipe es
sedici.creator.person Anacona Chicangana, Amalfy es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2022
sedici.relation.event Decisioning 2022. Collaboration in knowledge discovery and decision making: Applications to sustainable agriculture (La Plata, 30 de junio al 1 de julio de 2022) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/158339 es
sedici.relation.bookTitle Decisioning 2022. Collaboration in knowledge discovery and decision making: Applications to sustainable agriculture es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)