Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-11-08T12:59:22Z
dc.date.available 2023-11-08T12:59:22Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/159911
dc.description.abstract Chia oil is a source of α-linolenic (omega-3) fatty acid, which is known to promote human health but is highly prone to oxidation. Amylose (a polymer of α-1,4 D-glucose units) can molecularly encapsulate hydrophobic molecules, forming inclusion complexes that could potentially allow the incorporation of sensitive bioactive substances into functional foods. The evaluation of their oxidative stability is relevant to understand their behavior as delivery systems, but monitoring this parameter under real storage conditions requires long periods. In the present work, the oxidative stability of amylose-hydrolyzed chia oil inclusion complexes at 25 °C was estimated from the extrapolation of the exponential dependence of the Rancimat induction times determined at different temperatures (70–98 °C). The complexes were formed with high amylose corn starch and enzymatically hydrolyzed chia oil (10% or 20% hydrolysate/starch), with and without crystallization, using the KOH/HCl method followed by freeze-drying. The spectra of attenuated total reflectance Fourier-transform infrared spectroscopy revealed typical bands that confirmed the effective retention of chia oil fatty acids by the starch structure. The scanning electron micrographs showed that these samples were formed by irregular and porous solid particles. The induction time at 25 °C of crystallized complexes decreased with an increasing hydrolysate content, while the opposite was observed in non-crystallized complexes, as those formed with 20% hydrolysate were the ones that showed the highest stability. Although these findings should be confirmed under real storage conditions, the Rancimat results could be considered as a preliminary quick prediction of the behavior of inclusion complexes as carriers of omega-3 fatty acids. en
dc.language en es
dc.subject amylose inclusion complex es
dc.subject chia seed oil es
dc.subject omega-3 es
dc.subject Rancimat es
dc.title An Oxidative Stability Study of Amylose-Hydrolyzed Chia Oil Inclusion Complexes Using the Rancimat Method en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.3390/blsf2023025011 es
sedici.identifier.issn 2673-9976 es
sedici.creator.person Di Marco, Andrea Esther es
sedici.creator.person Ixtaina, Vanesa Yanet es
sedici.creator.person Tomás, Mabel Cristina es
sedici.subject.materias Química es
sedici.description.fulltext true es
mods.originInfo.place Centro de Investigación y Desarrollo en Criotecnología de Alimentos es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Biology and Life Sciences Forum es
sedici.relation.journalVolumeAndIssue vol. 25, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)