Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-11-15T21:23:25Z
dc.date.available 2024-11-15T21:23:25Z
dc.date.issued 2024
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/173172
dc.description.abstract PropósitoEl objetivo de esta investigación es desarrollar un enfoque automatizado que permita, a partir de planos raster, generar modelos de construcción compabitbles con la metodologia Building Information Model (BIM). Para ello, se plantean los siguientes objetivos específicos:1.Definir un mapeo entre planos y BIM: Se propone establecer una correspondencia entre los elementos de los planos (muros, puertas, ventanas, vigas, columnas, etc.) y los componentes de un BIM, tomando como base el estándar de planos de Argentina.2.Clasificación de elementos mediante inteligencia artificial (IA): Se utilizarán técnicas avanzadas de IA para clasificar los elementos identificados en los planos. Estos resultados permitirán la generación de documentos interoperables en formato BIM. Los planos arquitectónicos y estructurales serán procesados para reconocer automáticamente los distintos componentes constructivos y generar archivos exportables para su uso en modelos BIM.3.Validación del enfoque: Se evaluará la precisión del enfoque mediante el procesamiento de planos reales de viviendas y edificios, verificando su capacidad para generar modelos precisos y funcionales.ActividadesConstrucción de un dataset de planos: Dado que no se dispone de un banco de datos estructurado de legajos de obra en Argentina, se ha recolectado y clasificado una serie de planos de construcción en diversas especialidades (arquitectura, estructura, instalaciones). Los elementos de interés fueron etiquetados utilizando herramientas open source como LabelMe.Selección e implementación de técnicas de IA: A lo largo de la investigación, se probarán diversos modelos preentrenados de detección de objetos, como Mask R-CNN, Cascade R-CNN y YOLO, con técnicas de transfer learning adaptadas para optimizar su rendimiento en la clasificación de elementos de planos.Modelado BIM en Python: Los elementos clasificados serán integrados en un modelo BIM en formato IFC, utilizando librerías especializadas como IfcOpenShell para garantizar la interoperabilidad y la precisión del modelo generado. es
dc.language es es
dc.subject BIM es
dc.subject aprendizaje automátcico es
dc.subject ifc es
dc.subject modelado es
dc.subject mep es
dc.subject planos de planta es
dc.subject construcción es
dc.subject planos es
dc.subject bim en
dc.subject machine learning en
dc.subject ifc en
dc.subject modelling en
dc.subject building en
dc.subject mep en
dc.subject floorplans en
dc.subject blueprints en
dc.title Generación de modelo BIM implementando algoritmos de inteligencia artificial es
dc.title.alternative BIM model generation implementing artificial intelligence algorithms en
dc.type Objeto de conferencia es
sedici.creator.person Urbieta, Martin es
sedici.description.note Carrera: Doctorado en Ciencia Informáticas Lugar de trabajo: Laboratorio de Investigación y Formación en Informática Avanzada (LFIA) Organismo: CONICET Año de inicio de beca: 2021 Año de finalización de beca: 2026 Apellido, Nombre del Director/a/e: Rossi, Gustavo Apellido, Nombre del Codirector/a/e: Urbieta, Matias Lugar de desarrollo: Laboratorio de Investigación y Formación en Informática Avanzada (LFIA) Áreas de conocimiento: Cs de la Computación Tipo de investigación: Aplicada es
sedici.subject.materias Cs de la Computación es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ingeniería es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.institucionDesarrollo Laboratorio de Investigación y Formación en Informática Avanzada (LFIA) es
sedici.date.exposure 2024-11-20
sedici.relation.event Encuentro de Becaries de Grado y Posgrado de la UNLP (EBEC) (La Plata, 20 de noviembre de 2024) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)