Busque entre los 169741 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2025-02-06T12:34:33Z | |
dc.date.available | 2025-02-06T12:34:33Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/176192 | |
dc.description.abstract | The main challenge of automatic Sign Language Translation (SLT) is obtaining data to train models. For Argentinian Sign Language (LSA), the only dataset available for SLT is LSA-T, which contains extracts of a news channel in LSA and the corresponding Spanish subtitles provided by the authors. LSA-T contains a wide variety of signers, scenarios, and lightnings that could bias a model trained on it. We propose a model for Argentinian gloss-free SLT, since LSA-T does not contain gloss representations of the signs. The model is also pose-based to improve performance on low resource devices. Different versions of the model are also tested in two other well-known datasets to compare the results: GSL and RWTH Phoenix Weather 2014T. Our model stablished the new SoTA over LSA-T, which proved to be the most challenging due to the variety of topics covered that result in a vast vocabulary with many words appearing few times. | en |
dc.format.extent | 64-71 | es |
dc.language | en | es |
dc.subject | Sign Language Translation | es |
dc.subject | Pose Estimation | es |
dc.subject | Sign Language Datasets | es |
dc.subject | Deep Learning | es |
dc.subject | Gloss-free | es |
dc.title | Gloss-free Argentinian Sign Language Translation with pose-based deep learning models | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.isbn | 978-950-34-2428-5 | es |
sedici.creator.person | Dal Bianco, Pedro Alejandro | es |
sedici.creator.person | Ríos, Gastón Gustavo | es |
sedici.creator.person | Hasperué, Waldo | es |
sedici.creator.person | Stanchi, Oscar Agustín | es |
sedici.creator.person | Ronchetti, Franco | es |
sedici.creator.person | Quiroga, Facundo Manuel | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2024-10 | |
sedici.relation.event | XXX Congreso Argentino de Ciencias de la Computación (CACIC) (La Plata, 7 al 11 de octubre de 2024) | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.isRelatedWith | http://sedici.unlp.edu.ar/handle/10915/172755 | es |
sedici.relation.bookTitle | Libro de Actas - 30° Congreso Argentino de Ciencias de la Computación - CACIC 2024 | es |