Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2025-02-06T12:34:33Z
dc.date.available 2025-02-06T12:34:33Z
dc.date.issued 2024
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/176192
dc.description.abstract The main challenge of automatic Sign Language Translation (SLT) is obtaining data to train models. For Argentinian Sign Language (LSA), the only dataset available for SLT is LSA-T, which contains extracts of a news channel in LSA and the corresponding Spanish subtitles provided by the authors. LSA-T contains a wide variety of signers, scenarios, and lightnings that could bias a model trained on it. We propose a model for Argentinian gloss-free SLT, since LSA-T does not contain gloss representations of the signs. The model is also pose-based to improve performance on low resource devices. Different versions of the model are also tested in two other well-known datasets to compare the results: GSL and RWTH Phoenix Weather 2014T. Our model stablished the new SoTA over LSA-T, which proved to be the most challenging due to the variety of topics covered that result in a vast vocabulary with many words appearing few times. en
dc.format.extent 64-71 es
dc.language en es
dc.subject Sign Language Translation es
dc.subject Pose Estimation es
dc.subject Sign Language Datasets es
dc.subject Deep Learning es
dc.subject Gloss-free es
dc.title Gloss-free Argentinian Sign Language Translation with pose-based deep learning models en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2428-5 es
sedici.creator.person Dal Bianco, Pedro Alejandro es
sedici.creator.person Ríos, Gastón Gustavo es
sedici.creator.person Hasperué, Waldo es
sedici.creator.person Stanchi, Oscar Agustín es
sedici.creator.person Ronchetti, Franco es
sedici.creator.person Quiroga, Facundo Manuel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2024-10
sedici.relation.event XXX Congreso Argentino de Ciencias de la Computación (CACIC) (La Plata, 7 al 11 de octubre de 2024) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/172755 es
sedici.relation.bookTitle Libro de Actas - 30° Congreso Argentino de Ciencias de la Computación - CACIC 2024 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)