The main challenge of automatic Sign Language Translation (SLT) is obtaining data to train models. For Argentinian Sign Language (LSA), the only dataset available for SLT is LSA-T, which contains extracts of a news channel in LSA and the corresponding Spanish subtitles provided by the authors. LSA-T contains a wide variety of signers, scenarios, and lightnings that could bias a model trained on it. We propose a model for Argentinian gloss-free SLT, since LSA-T does not contain gloss representations of the signs. The model is also pose-based to improve performance on low resource devices. Different versions of the model are also tested in two other well-known datasets to compare the results: GSL and RWTH Phoenix Weather 2014T. Our model stablished the new SoTA over LSA-T, which proved to be the most challenging due to the variety of topics covered that result in a vast vocabulary with many words appearing few times.