Las Máquinas de Vectores de Soporte han demostrado ser una herramienta sumamente útil para resolver problemas de clasificación. Su aplicación en situaciones con más de una clase generalmente implica la combinación de varios subclasificadores. Este trabajo propone un nuevo método para la construcción de una estructura que organice el entrenamiento y uso de estos subclasificadores logrando de esta forma una reducción en el tiempo de respuesta en una clasificación multi-clase. Se trata de un árbol balanceado generado a partir de la estructura de una red neuronal competitiva dinámica. En base a la información de la red se identifican las neuronas relevantes para la separación de clases y se las utiliza para generar el árbol buscado. Cada nodo del árbol permite etiquetar los datos de entrada brindando la información necesaria para entrenar cada subclasificador. Los resultados obtenidos al comparar el método propuesto con otras soluciones existentes han sido satisfactorios.
Notas
Presentado en XI Workshop Agentes y Sistemas Inteligentes (WASI)
Información general
Fecha de exposición:octubre 2010
Fecha de publicación:2010
Idioma del documento:Español
Evento:XVI Congreso Argentino de Ciencias de la Computación
Institución de origen:Red de Universidades con Carreras en Informática (RedUNCI)
Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)