La Web se ha vuelto un recurso potencialmente infinito de información, transformándose además en una herramienta imprescindible para muchas tareas de la vida diaria. Esto provocó un aumento en la cantidad de información existente en el contexto de los usuarios, que no es tenida en cuenta por los sistemas de recuperación de información actuales.
En esta tesis se propone una técnica semisupervisada de recuperación de información que ayuda al usuario a recuperar información relevante para su contexto actual. El objetivo de la misma es contrarrestar la diferencia de vocabulario que pudiera existir entre el conocimiento que tiene el usuario sobre un tema y los documentos relevantes que se encuentran en la Web. Se presenta un método de aprendizaje de nuevos términos asociados a un contexto temático, a través de la identificación de términos que sean buenos descriptores y términos que sean buenos discriminadores del tópico del contexto actual del usuario.
Para la evaluación del método propuesto se desarrolló un marco teórico de evaluación de mecanismos de búsqueda y, a partir de este, se implementó una plataforma de evaluación, que además permitió comparar las técnicas desarrolladas en esta tesis con otras técnicas existentes en la literatura. La evidencia experimental muestra que las mejoras alcanzadas son significativas respecto de otros trabajos publicados. Dentro de este marco se desarrollaron asimismo nuevas métricas de evaluación que benefician al material novedoso y que incorporan una medida de relación semántica entre documentos. Los algoritmos desarrollados a la largo de esta tesis evolucionan consultas de alta calidad, permitiendo recuperar recursos relevantes al contexto del usuario, e impactan positivamente en la forma en la que este interactúa con los recursos que tiene disponibles.