Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-10-01T11:49:41Z
dc.date.available 2012-10-01T11:49:41Z
dc.date.issued 2002
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/21801
dc.description.abstract An important ampliative inference schema that is commonly used is abduction. Abduction plays a central role in many applications, such as diagnosis, expert systems, and causal reasoning. In a very broad sense we can state that abduction is the inference process that goes from observations to explanations within a more general context or theoretical framework. That is to say, abductive inference looks for sentences (named explanations), which, added to the theory, enable deductions for the observations. Most of the times there are several such explanations for a given observation. For this reason, in a narrower sense, abduction is regarded as an inference to the best explanation. However, a problem that faces abduction is the explanation of anomalous observations, i. e., observations that are contradictory with the current theory. It is perhaps impossible to do such inferences in monotonic theories. For this reason, in this work we will consider the problem of characterizing abduction in nonmonotonic theories. Our inference system is based on a natural deduction presentation of the implicational segment of a relevant logic, much similar to the R! system of Anderson and Belnap. Then we will discuss some issues arising the pragmatic acceptance of abductive inferences in nonmonotonic theories. en
dc.format.extent 24-28 es
dc.language en es
dc.subject ARTIFICIAL INTELLIGENCE es
dc.subject abduction es
dc.subject observation es
dc.subject inference system es
dc.subject inference process es
dc.title Embedding abduction in nonmonotonic theories en
dc.type Objeto de conferencia es
sedici.creator.person Delrieux, Claudio es
sedici.description.note Eje: Aspectos teóricos de inteligencia artificial es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2002-05
sedici.relation.event IV Workshop de Investigadores en Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)