This study investigates an approach of knowledge discovery and data mining in insufficient databases. An application of Computational Taxonomy analysis demonstrates that the approach is effective in such a data mining process. The approach is characterized by the use ot both the second type of domain knowledge and visualization. This type of knowledge is newly defined in this study and deduced from supposition about background situations of the domain. The supposition is triggered by strong intuition about the extracted features in a recurrent process of data mining. This type of domain knowledge is useful not only for discovering interesting knowledge but al so tor guiding the subsequent search for more explicit and interesting knowledge.
The visualization is very useful for triggering the supposition.
Notas
Eje: Ingeniería de software y base de datos
Información general
Fecha de exposición:mayo 2000
Fecha de publicación:2000
Idioma del documento:Inglés
Evento:II Workshop de Investigadores en Ciencias de la Computación
Institución de origen:Red de Universidades con Carreras en Informática (RedUNCI)
Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)