Two powerful metaheuristics being used successfully since their creation for the resolution of optimization problems are Cellular Genetic Algorithm (cGA) and Particle Swam Optimization (PSO). Over the last years, interest in hybrid metaheuristics has risen considerably in the field of optimization. Combinations of operators and metaheuristics have provided very powerful search techniques. In this work we incorporate active components of PSO into the cGA. We replace the mutation and the crossover operators by concepts inherited by PSO internal techniques.
We present four hybrid algorithms and analyze their performance using a set of different problems. The results obtained are quite satisfactory in efficacy and efficiency.
Notas
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Información general
Fecha de exposición:octubre 2012
Fecha de publicación:octubre 2012
Idioma del documento:Inglés
Evento:XVIII Congreso Argentino de Ciencias de la Computación
Institución de origen:Red de Universidades con Carreras en Informática (RedUNCI)
Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)