This article introduces an approach to anomaly intrusion detection based on a combination of supervised and unsupervised machine learning algorithms. The main objective of this work is an effective modeling of the TCP/IP network traffic of an organization that allows the detection of anomalies with an efficient percentage of false positives for a production environment. The architecture proposed uses a hierarchy of Self-Organizing Maps for traffic modeling combined with Learning Vector Quantization techniques to ultimately classify network packets. The architecture is developed using the known SNORT intrusion detection system to preprocess network traffic. In comparison to other techniques, results obtained in this work show that acceptable levels of compromise between attack detection and false positive rates can be achieved.
Notas
IFIP International Conference on Artificial Intelligence in Theory and Practice - Neural Nets
Información general
Fecha de exposición:agosto 2006
Fecha de publicación:agosto 2006
Idioma del documento:Inglés
Evento:19 th IFIP World Computer Congress - WCC 2006
Institución de origen:Red de Universidades con Carreras en Informática (RedUNCI)
Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)