Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2010-07-08T20:23:10Z
dc.date.available 2010-07-08T03:00:00Z
dc.date.issued 2000
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/2483
dc.identifier.uri https://doi.org/10.35537/10915/2483
dc.description.abstract En esta tesis se desarrollan y aplican métodos no perturbativos en modelos microscópicos de las interacciones entre nucleones. En las aproximaciones usuales, y en relación a Hamiltonianos nucleares, se consideran las expansiones armónicas alrededor de un mínimo, los movimientos de pequeña amplitud (método de linealización de Tamm-Dankoff (TDA) y aproximación de fases al azar (RPA) [RJNG80]) y las llamadas expansiones bosónicas [KLEIN-MARSH91]. En el caso de las expansiones bosónicas se parte de una cierta representación y se establecen correspondencias entre las estructuras microscópicas y los grados de libertad colectivos. Este tipo de esquemas se basa en la identificación de términos dominantes del Hamiltoniano. Los desarrollos perturbativos, por su parte, están referidos a la solución de campo medio. Obviamente, al considerar este esquema (campo medio correcciones perturbativas) se introducen de hecho rupturas de simetrías (relacionadas con la adopción de una solución de campo medio) y problemas de convergencia. En esta tesis se estudia el comportamiento de los métodos de linealización y de las expansiones bosónicas en presencia de rupturas variadas de simetrías y en relación con la introducción de operadores colectivos. El objetivo del trabajo desarrollado consistió específicamente en los siguientes puntos: 1) el estudio de la convergencia de las expansiones perturbativas cuando se trata con transformaciones bosónicas, y, 2) la validez de las bosonizaciones en presencia de rupturas de simetría. es
dc.language es es
dc.subject Mecánica analítica es
dc.subject Mecánica es
dc.subject Mecánica cuántica es
dc.title Técnicas no perturbativas en Hamiltonianos de muchos cuerpos es
dc.type Tesis es
sedici.creator.person Montani, Fernando Fabián es
sedici.description.note Tesis digitalizada en SEDICI gracias a la colaboración del autor. es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Tesis de doctorado es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.contributor.director Civitarese, Enrique Osvaldo es
thesis.degree.name Doctor en Física es
thesis.degree.grantor Universidad Nacional de La Plata es
sedici.date.exposure 2000
sedici2003.identifier ARG-UNLP-TPG-0000000782 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)