Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2010-08-05T18:28:38Z
dc.date.available 2010-08-05T03:00:00Z
dc.date.issued 2001
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/2558
dc.identifier.uri https://doi.org/10.35537/10915/2558
dc.description.abstract Los Sistemas Diferenciales Algebraicos (SDA) son también conocidos como sistemas singulares, implícitos, descriptores o sistemas generalizados. Surgen naturalmente como modelos dinámicos de aplicaciones de la ingeniería (tales como redes de circuitos eléctricos [1], sistemas de potencia [2], sistemas mecánicos con restricciones [3], ingeniería aeroespacial [4] y procesos químicos [5]); se utilizan también para modelar sistemas sociales, sistemas económicos, sistemas biológicos; etc. En muchos casos los SDA pueden resolverse eficientemente por medio de métodos numéricos standard utilizados para la resolución de Sistemas Diferenciales Ordinarios (SDO). Este enfoque fue introducido por Gear [6], y utilizado por diferentes autores, por ejemplo en [7] y [8]. Sin embargo, los SDA suelen tener algunas propiedades que provocan que estos métodos numéricos fracasen. En [7] y [9], por ejemplo, se presentan algunos resultados acerca de las causas de tales dificultades para el caso particular de una clase de SDA lineales. Las técnicas utilizadas en estos trabajos son de naturaleza algebraica, y no brindan una información completa acerca de la existencia y unicidad de soluciones. Otro enfoque diferente surge al considerar un SDA como un conjunto de ecuaciones diferenciales sobre una variedad. Esta aproximación geométrica permite desarrollar una teoría de existencia y unicidad de soluciones que da lugar a conocer nuevas propiedades de los SDA, y a analizar cuales son las causas por la que los métodos numéricos fallan algunas veces, [10]. es
dc.language es es
dc.subject Matemáticas es
dc.subject Álgebra diferencial es
dc.title Sistemas diferenciales-algebraicos: aplicaciones a perturbación singular y control es
dc.type Tesis es
sedici.creator.person Etchechoury, María del Rosario es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Tesis de doctorado es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.contributor.director Muravchik, Carlos Horacio es
sedici.contributor.codirector Muschietti, María Amelia es
sedici.institucionDesarrollo Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales es
thesis.degree.name Doctor en Ciencias Exactas, área Matemática es
thesis.degree.grantor Universidad Nacional de La Plata es
sedici.date.exposure 2001
sedici2003.identifier ARG-UNLP-TPG-0000000941 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)