Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2014-05-05T18:36:25Z
dc.date.available 2014-05-05T18:36:25Z
dc.date.issued 2004-12
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/35111
dc.description.abstract This report describes a new set of macromolecular descriptors of relevance to protein QSAR/QSPR studies, protein's quadratic indices. These descriptors are calculated from the macromolecular pseudograph's α-carbon atom adjacency matrix. A study of the protein stability effects for a complete set of alanine substitutions in Arc repressor illustrates this approach. Quantitative Structure-Stability Relationship (QSSR) models allow discriminating between near wild-type stability and reduced-stability A-mutants. A linear discriminant function gives rise to excellent discrimination between 85.4% (35/41) and 91.67% (11/12) of near wild-type stability/reduced stability mutants in training and test series, respectively. The model's overall predictability oscillates from 80.49 until 82.93, when n varies from 2 to 10 in leave-n-out cross validation procedures. This value stabilizes around 80.49% when n was > 6. Additionally, canonical regression analysis corroborates the statistical quality of the classification model (Rcanc = 0.72, p-level <0.0001). This analysis was also used to compute biological stability canonical scores for each Arc A-mutant. On the other hand, nonlinear piecewise regression model compares favorably with respect to linear regression one on predicting the melting temperature (t m) of the Arc A-mutants. The linear model explains almost 72% of the variance of the experimental tm (R = 0.85 and s = 5.64) and LOO press statistics evidenced its predictive ability (q2 = 0.55 and s cv = 6.24). However, this linear regression model falls to resolve tm predictions of Arc A-mutants in external prediction series. Therefore, the use of nonlinear piecewise models was required. The tm values of A-mutants in training (R = 0.94) and test (R = 0.91) sets are calculated by piecewise model with a high degree of precision. A break-point value of 51.32°C characterizes two mutants' clusters and coincides perfectly with the experimental scale. For this reason, we can use the linear discriminant analysis and piecewise models in combination to classify and predict the stability of the mutants' Arc homodimers. These models also permit the interpretation of the driving forces of such a folding process. The models include protein's quadratic indices accounting for hydrophobic (z1), bulk-steric (z2), and electronic (z3) features of the studied molecules. Preponderance of z1 and z3 over z 2 indicates the higher importance of the hydrophobic and electronic side chain terms in the folding of the Arc dimer. In this sense, developed equations involve short-reaching (k ≤ 3), middle- reaching (3 < k ≤ 7) and far-reaching (k = 8 or greater) z1, 2, 3-protein's quadratic indices. This situation points to topologic/topographic protein's backbone interactions control of the stability profile of wild-type Arc and its A-mutants. Consequently, the present approach represents a novel and very promising way to mathematical research in biology sciences. en
dc.format.extent 1124-1147 es
dc.language en es
dc.subject alanine-substitution mutant en
dc.subject protein en
dc.subject arc repressor en
dc.subject amino acid substitution en
dc.subject macromolecule en
dc.subject protein quadratic indices en
dc.subject mutant en
dc.subject protein stability en
dc.subject quantitative structure activity relation en
dc.subject QSPR en
dc.subject TOMOCOMD software en
dc.subject alanine en
dc.subject dimerization en
dc.subject stereoisomerism en
dc.title Protein quadratic indices of the "macromolecular pseudograph's α-carbon atom adjacency matrix". 1. Prediction of Arc repressor alanine-mutant's stability en
dc.type Articulo es
sedici.identifier.uri http://www.mdpi.com/1420-3049/9/12/1124 es
sedici.identifier.other pmid:18007508
sedici.identifier.other eid:2-s2.0-12344287241
sedici.identifier.issn 1420-3049 es
sedici.creator.person Marrero Ponce, Yovani es
sedici.creator.person Medina Marrero, Ricardo es
sedici.creator.person Castro, Eduardo A. es
sedici.creator.person Armas, Ronal Ramos de es
sedici.creator.person González Díaz, Humberto es
sedici.creator.person Romero Zaldívar, Vicente es
sedici.creator.person Torrens, Francisco es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Química es
sedici.subject.materias Farmacia es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 3.0 Unported (CC BY 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by/3.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Molecules es
sedici.relation.journalVolumeAndIssue vol. 9, no.12 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 3.0 Unported (CC BY 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 3.0 Unported (CC BY 3.0)