En las últimas décadas diferentes tipos de algoritmos de optimización han sido desarrollados para resolver una gran cantidad de problemas. El principal desafío se presenta cuando el problema presenta una función objetivo altamente no lineal y no convexa, esto dificulta garantizar la localización del mínimo global. Por lo tanto, la necesidad de encontrar nuevas metaheurísticas que proporcionen un mejor desempeño en este tipo de problemas de optimización sigue aún vigente. En este trabajo se presenta el resultado de modificar AEvol, un algoritmo genético con un operador sencillo. La modificación consiste en la incorporación de un operador de cruza: BLX-a. Además de la incorporación de tres criterios de selección de padres: ruleta, torneo y muestreo estocástico universal. Al validar el nuevo algoritmo utilizando seis funciones benchmarks con diferentes configuraciones de parámetros, se obtuvieron resultados satisfactorios.