Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2016-11-15T14:37:15Z
dc.date.available 2016-11-15T14:37:15Z
dc.date.issued 2016
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/56727
dc.identifier.uri https://doi.org/10.35537/10915/56727
dc.description.abstract En este trabajo realizamos estudios experimentales sobre la la propagación de luz por atmósfera turbulenta empleando como herramienta principal de análisis el estudio de la fractalidad y multifractalidad de las series temporales registradas. En la primera parte desarrollamos principalmente herramientas para estimar la fractalidad y el grado de multifractalidad de series temporales (Capítulo 2). En concreto, hacemos una implementación propia del algoritmo de multifractal detrended fluctuation analysis (MF-DFA), del cual el detrended fluctuation analysis (DFA, usualmente empleado para estimar el exponente de Hurst H) resulta ser un caso particular. Un estudio crítico de este método permitió sugerir un criterio propio para determinar el rango óptimo de ajuste en esta técnica. Asimismo, mediante un detallado análisis numérico, se lograron identificar los efectos que los ruidos coloreados tienen sobre el espectro multifractal. Vale la pena remarcar que todo registro experimental es, en mayor o en menor medida, inevitablemente contaminado por este tipo de ruidos. En la segunda parte nos abocamos de lleno a la Óptica Atmosférica. Primero hacemos una rápida introducción al tema que desemboca en un método para la simulación de propagación de luz en atmósferas turbulentas (Capítulo 3). Luego aplicamos las técnicas desarrolladas en la primera parte a cuatro casos experimentales concretos, siendo cada uno de ellos fruto de la investigación desarrollada durante el Doctorado. En el primer caso (Capítulo 4) estudiamos la presencia de correlaciones de largo alcance en las fluctuaciones de ángulo de arribo para luz proveniente de fuentes estelares y confirmamos un comportamiento no-Kolmogorov fundamentado por la estimación del exponente de Hurst. Las demás experiencias tratan sobre propagación de luz a través de una turbulencia atmosférica controlada en laboratorio empleando un generador de turbulencias isotrópicas (turbulador). En este aparato es bien conocida y configurable la constante de estructura para el índice de refracción (C_n^2), la cual es una medida de la intensidad de la turbulencia que sirve entonces como parámetro para los experimentos. En el segundo caso (Capítulo 5) se estudia el exponente de Hurst del bailoteo (wandering) de un haz láser en diversas condiciones de turbulencia controlada. En esta experiencia también confirmamos desviaciones respecto del valor de H esperado para el modelo de Kolmogorov. En el tercer caso (Capítulo 6) se aborda la formación de secuencias de imágenes (video) a través de turbulencia atmosférica de diversas intensidades aprovechando situaciones en las que el objetivo presenta regiones de alto contraste. Hacemos una nueva definición del índice de centelleo para un estudio píxel por píxel y, después de seleccionar sólo las regiones de mayor contraste, encontramos que la cantidad de píxeles con centelleo por arriba del ruido presenta una muy buena correlación con C_n^2, haciendo de éste un método útil para estimar la constante de estructura con un arreglo experimental muy sencillo. A esto se le suma un estudio de correlaciones temporales estimando el H de cada píxel de la secuencia en todas las condiciones de turbulencia. Finalmente, estudiamos el efecto de la turbulencia atmosférica cuando por ésta se propaga un haz láser gaseoso en condiciones de caos (Capítulo 7). Estudiamos en este caso el exponente de Hurst y el rango multifractal versus la intensidad de la turbulencia. Dejamos para los apéndices los siguientes aspectos: los detalles de las rutinas implementadas para el análisis de multifractalidad (Apéndices A y B), un breve repaso de técnicas básicas para caracterizar la caoticidad de una serie temporal (Apéndice C) con las rutinas desarrolladas a tal efecto (Apéndice D), y finalmente la caracterización del turbulador (Apéndice E). es
dc.language es es
dc.subject Óptica y Fotónica es
dc.subject óptica atmosférica, turbulencia atmosférica, series temporales, fractalidad, multifractalidad es
dc.subject Luz es
dc.subject Atmósfera es
dc.title Estadística de la propagación de luz en atmósferas turbulentas es
dc.type Tesis es
sedici.creator.person Gulich, Damián es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Tesis de doctorado es
sedici.rights.license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
sedici.contributor.director Zunino, Luciano José es
thesis.degree.name Doctor en Ciencias Exactas, área Física es
thesis.degree.grantor Universidad Nacional de La Plata es
sedici.date.exposure 2016-03-22
sedici.acta 1687 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)