Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2017-11-10T17:23:35Z
dc.date.available 2017-11-10T17:23:35Z
dc.date.issued 2017-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/63484
dc.description.abstract Shimmer is a classical acoustic measure of the amplitude perturbation of a signal. This kind of variation in the human voice allow to characterize some properties, not only of the voice itself, but of the person who speaks. During the last years deep learning techniques have become the state of the art for recognition tasks on the voice. In this work the relationship between shimmer and deep neural networks is analyzed. A deep learning model is created. It is able to approximate shimmer value of a simple synthesized audio signal (stationary and without formants) taking the spectrogram as input feature. It is concluded firstly, that for this kind of synthesized signal, a neural network like the one we proposed can approximate shimmer, and secondly, that the convolution layers can be designed in order to preserve the information of shimmer and transmit it to the following layers. en
dc.format.extent 43-52 es
dc.language en es
dc.subject shimmer en
dc.subject voice quality en
dc.subject deep learning en
dc.subject deep neural network en
dc.subject convolutional neural network en
dc.title Deep Neural Networks for Shimmer Approximation in Synthesized Audio Signal en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-1539-9 es
sedici.creator.person García, Mario Alejandro es
sedici.creator.person Destéfanis, Eduardo A. es
sedici.description.note Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI). es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2017-10
sedici.relation.event XXIII Congreso Argentino de Ciencias de la Computación (La Plata, 2017). es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)