A classificação tem o objetivo de rotular eventos ou objetos de acordo com classes pré-estabelecidas. No entanto, a maioria dos algoritmos perdem a capacidade de predição, quando o conjunto de dados possui uma distribuição desbalanceada entre suas classes. Para tentar resolver esse problema diversos métodos tęm sido propostos na literatura. O presente estudo tem como objetivo analisar e comparar os métodos mais conhecidos que se propõem a resolver o problema de classificação com bases desbalanceadas. Para isto, os métodos foram testados usando cinco classificadores tradicionais, e 13 bases provenientes do UCI Machine Learning Repository. Os resultados demonstram que é possível melhorar a taxa de classificação, mas é difícil dizer o método que se comporta melhor, pois tudo depende de como o algoritmo de classificação generaliza a base.