Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2018-10-16T17:44:05Z
dc.date.available 2018-10-16T17:44:05Z
dc.date.issued 2018
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/69919
dc.description.abstract The standard scheduler of Hadoop does not consider the characteristics of jobs such as computational demand, inputs / outputs, dependencies, location of the data, etc., which could be a valuable source to allocate resources to jobs in order to optimize their use. The objective of this research is to take advantage of this information for planning, limiting the scope to ML / DM algorithms, in order to improve the execution times with respect to existing schedulers. The aim is to improve Hadoop job schedulers, seeking to optimize the execution times of machine learning and data mining algorithms in Clusters. en
dc.format.extent 62-68 es
dc.language en es
dc.subject Big Data, Hadoop, schedulers of Hadoop, ML/DM algorithms, machine learning en
dc.subject Data mining es
dc.title Job Schedulers for Machine Learning and Data Mining algorithms distributed in Hadoop en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-1659-4 es
sedici.creator.person Cornejo, Félix Martín es
sedici.creator.person Zunino, Alejandro es
sedici.creator.person Murazzo, María Antonia es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2018-06
sedici.relation.event VI Jornadas de Cloud Computing & Big Data (JCC&BD) (La Plata, 2018) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/69464 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)