Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-05-27T12:37:16Z
dc.date.available 2019-05-27T12:37:16Z
dc.date.issued 2017
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/75424
dc.description.abstract We analyze the spectrum and normal mode representation of general quadratic bosonic formsHnot necessarily hermitian. It is shown that in the one-dimensional case such forms exhibit either an harmonic regime where bothHandH^†have a discrete spectrum with biorthogonal eigenstates, and a coherent-like regime where eitherHorH†have a continuous complex two-fold degenerate spectrum, while its adjoint has no convergent eigenstates. These regimes reflect the nature of the pertinent normal boson operators. Non-diagonalizable cases as well critical boundary sectors separating these regimes are also analyzed. The extension toN-dimensional quadratic systems is as well discussed. en
dc.language es es
dc.subject Non-hermitian boson operators en
dc.subject PT-symmetry en
dc.subject normal modes en
dc.title Spectrum and normal modes of non-hermitian quadratic boson operators en
dc.type Articulo es
sedici.creator.person García, Javier es
sedici.creator.person Rossignoli, Raúl es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.relation.journalTitle Physical Review A es
sedici.relation.journalVolumeAndIssue vol. 96 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)