Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-10-01T17:46:52Z
dc.date.available 2019-10-01T17:46:52Z
dc.date.issued 2010
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/82430
dc.description.abstract Let J be a separable Banach ideal in the space of bounded operators acting in a Hilbert space H and I the set of partial isometries in H. Fix v∈I. In this paper we study metric properties of the I-Stiefel manifold associated to v, namely. StI(v)={v0∈: v-v0∈I,j(v0*v0,v*v)=0}, where j(,) is the Fredholm index of a pair of projections. Let UI(H) be the Banach-Lie group of unitary operators which are perturbations of the identity by elements in I. Then StI(v) coincides with the orbit of v under the action of UI(H)×UI(H) on I given by (u,w)·v0=uv0w*, u,w∈UI(H) and v0∈StI(v). We endow StI(v) with a quotient Finsler metric by means of the Banach quotient norm of the Lie algebra of UI(H)×UI(H) by the Lie algebra of the isotropy group. We give a characterization of the rectifiable distance induced by this metric. In fact, we show that the rectifiable distance coincides with the quotient distance of UI(H)×UI(H) by the isotropy group. Hence this metric defines the quotient topology in StI(v).The other results concern with minimal curves in I-Stiefel manifolds when the ideal I is fixed as the compact operators in H. The initial value problem is solved when the partial isometry v has finite rank. In addition, we use a length-reducing map into the Grassmannian to find some special partial isometries that can be joined with a curve of minimal length. en
dc.format.extent 469-479 es
dc.language en es
dc.subject Banach ideal es
dc.subject Finsler metric es
dc.subject Minimal curves es
dc.subject Partial isometry es
dc.title Metric geometry in infinite dimensional Stiefel manifolds en
dc.type Articulo es
sedici.identifier.other eid:2-s2.0-77953360242 es
sedici.identifier.other doi:10.1016/j.difgeo.2009.12.003 es
sedici.identifier.issn 0926-2245 es
sedici.creator.person Chiumiento, Eduardo Hernán es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Differential Geometry and its Application es
sedici.relation.journalVolumeAndIssue vol. 28, no. 4 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)