Busque entre los 166596 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-10-01T17:46:52Z | |
dc.date.available | 2019-10-01T17:46:52Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/82430 | |
dc.description.abstract | Let J be a separable Banach ideal in the space of bounded operators acting in a Hilbert space H and I the set of partial isometries in H. Fix v∈I. In this paper we study metric properties of the I-Stiefel manifold associated to v, namely. StI(v)={v0∈: v-v0∈I,j(v0*v0,v*v)=0}, where j(,) is the Fredholm index of a pair of projections. Let UI(H) be the Banach-Lie group of unitary operators which are perturbations of the identity by elements in I. Then StI(v) coincides with the orbit of v under the action of UI(H)×UI(H) on I given by (u,w)·v0=uv0w*, u,w∈UI(H) and v0∈StI(v). We endow StI(v) with a quotient Finsler metric by means of the Banach quotient norm of the Lie algebra of UI(H)×UI(H) by the Lie algebra of the isotropy group. We give a characterization of the rectifiable distance induced by this metric. In fact, we show that the rectifiable distance coincides with the quotient distance of UI(H)×UI(H) by the isotropy group. Hence this metric defines the quotient topology in StI(v).The other results concern with minimal curves in I-Stiefel manifolds when the ideal I is fixed as the compact operators in H. The initial value problem is solved when the partial isometry v has finite rank. In addition, we use a length-reducing map into the Grassmannian to find some special partial isometries that can be joined with a curve of minimal length. | en |
dc.format.extent | 469-479 | es |
dc.language | en | es |
dc.subject | Banach ideal | es |
dc.subject | Finsler metric | es |
dc.subject | Minimal curves | es |
dc.subject | Partial isometry | es |
dc.title | Metric geometry in infinite dimensional Stiefel manifolds | en |
dc.type | Articulo | es |
sedici.identifier.other | eid:2-s2.0-77953360242 | es |
sedici.identifier.other | doi:10.1016/j.difgeo.2009.12.003 | es |
sedici.identifier.issn | 0926-2245 | es |
sedici.creator.person | Chiumiento, Eduardo Hernán | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Differential Geometry and its Application | es |
sedici.relation.journalVolumeAndIssue | vol. 28, no. 4 | es |