Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-10-02T14:15:53Z
dc.date.available 2019-10-02T14:15:53Z
dc.date.issued 2010
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/82479
dc.description.abstract Let M be a finite von Neumann algebra with a faithful normal trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ‖x‖p = τ (|x|p)1/p, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance dp induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance over dp that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance dO, p. We prove that the distances over dp and dO, p coincide. Based on this fact, we show that the metric space (O, dp) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm. en
dc.format.extent 541-558 es
dc.language en es
dc.subject Finite von Neumann algebra es
dc.subject Finsler metric es
dc.subject Geodesic es
dc.subject Homogeneous space es
dc.subject p-Norm es
dc.subject Path metric space es
dc.subject Quotient metric es
dc.subject Unitary group es
dc.title Homogeneous manifolds from noncommutative measure spaces en
dc.type Articulo es
sedici.identifier.other eid:2-s2.0-75049083008 es
sedici.identifier.other doi:10.1016/j.jmaa.2009.11.024 es
sedici.identifier.issn 0022247X es
sedici.creator.person Andruchow, Esteban es
sedici.creator.person Chiumiento, Eduardo Hernán es
sedici.creator.person Larotonda, G. es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Mathematical Analysis and Applications es
sedici.relation.journalVolumeAndIssue vol. 365, no. 2 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)