Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-10-04T14:03:07Z
dc.date.available 2019-10-04T14:03:07Z
dc.date.issued 2009
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/82702
dc.description.abstract Let M be a II1 factor with trace τ, A ⊆ Ma masa and EA the unique conditional expectation onto A. Under some technical assumptions on the inclusion A⊆M, which hold true for any semiregular masa of a separable factor, we show that for elements a in certain dense families of the positive part of the unit ball of A, it is possible to find a projection p ∈ M such that EA(p) = a. This shows a new family of instances of a conjecture by Kadison, the so-called "carpenter's theorem". en
dc.format.extent 3679-3687 es
dc.language en es
dc.subject Conditional expectations es
dc.subject Diagonals of operators es
dc.subject Schur-Horn theorem es
dc.title Towards the Carpenter's theorem en
dc.type Articulo es
sedici.identifier.other doi:10.1090/S0002-9939-09-09999-7 es
sedici.identifier.other eid:2-s2.0-77950842141 es
sedici.identifier.issn 0002-9939 es
sedici.creator.person Argerami, Martín es
sedici.creator.person Massey, Pedro Gustavo es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Proceedings of the American Mathematical Society es
sedici.relation.journalVolumeAndIssue vol. 137, no. 11 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)