Upload resources

Upload your works to SEDICI to increase its visibility and improve its impact


Show simple item record

dc.date.accessioned 2019-10-09T17:30:06Z
dc.date.available 2019-10-09T17:30:06Z
dc.date.issued 2007
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/82971
dc.description.abstract We study the motion of self-deforming bodies with non-zero angular momentum when the changing shape is known as a function of time. The conserved angular momentum with respect to the center of mass, when seen from a rotating frame, describes a curve on a sphere as happens for the rigid body motion, though obeying a more complicated non-autonomous equation. We observe that if, after time Δ T, this curve is simple and closed, the deforming body's orientation in space is fully characterized by an angle or phase θM. We also give a reconstruction formula for this angle which generalizes R, Montgomery's well known formula for the rigid body phase. Finally, we apply these techniques to obtain analytical results on the motion of deforming bodies in some concrete examples. en
dc.format.extent 1405-1420 es
dc.language en es
dc.subject Classical mechanics es
dc.subject Deformable bodies es
dc.subject Real and complex differential geometry es
dc.subject Reconstruction phases es
dc.subject Time dependent non-integrable classical systems es
dc.title A generalized Montgomery phase formula for rotating self-deforming bodies en
dc.type Articulo es
sedici.identifier.other doi:10.1016/j.geomphys.2006.11.003 es
sedici.identifier.other eid:2-s2.0-33846320128 es
sedici.identifier.issn 0393-0440 es
sedici.creator.person Cabrera, Alejandra Fabiana es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Geometry and Physics es
sedici.relation.journalVolumeAndIssue vol. 57, no. 5 es

Download Files

This item appears in the following Collection(s)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)