Busque entre los 167390 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-10-11T14:42:32Z | |
dc.date.available | 2019-10-11T14:42:32Z | |
dc.date.issued | 2005-11-05 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/83153 | |
dc.description.abstract | If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for domains with external cusps. In this paper we prove that the result holds for John domains. Our proof is constructive: the solution u is given by an explicit integral operator acting on f. To prove that u ∈ W01, p (Ω) we make use of the Calderón-Zygmund singular integral operator theory and the Hardy-Littlewood maximal function. For domains satisfying the separation property introduced in [S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (5) (1995) 577-593], and 1 < p < n, we also prove a converse result, thus characterizing in this case the domains for which a continuous right inverse of the divergence exists. In particular, our result applies to simply connected planar domains because they satisfy the separation property. | en |
dc.format.extent | 373-401 | es |
dc.language | en | es |
dc.subject | Divergence operator | es |
dc.subject | John domains | es |
dc.subject | Singular integrals | es |
dc.title | Solutions of the divergence operator on John domains | en |
dc.type | Articulo | es |
sedici.identifier.other | http://dx.doi.org/10.1016/j.aim.2005.09.004 | es |
sedici.identifier.issn | 0001-8708 | es |
sedici.creator.person | Acosta, Gabriel | es |
sedici.creator.person | Durán, Ricardo G. | es |
sedici.creator.person | Muschietti, María Amelia | es |
sedici.subject.materias | Ciencias Exactas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Departamento de Matemática | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Advances in Mathematics | es |
sedici.relation.journalVolumeAndIssue | vol. 206, no. 2 | es |