Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-10-11T15:59:47Z
dc.date.available 2019-10-11T15:59:47Z
dc.date.issued 2001
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/83170
dc.description.abstract In this text we attempt to unify many results about the K operator based on a new theory involving graphs, families and operators. We are able to build an "operator algebra" that helps to unify and automate arguments. In addition, we relate well-known properties, such as the Helly property, to the families and the operators. As a result, we deduce many classic results in clique graph theory from the basic fact that CS = I for conformal, reduced families. This includes Hamelink's construction, Roberts and Spencer theorem, and Bandelt and Prisner's partial characterization of clique-fixed classes [2]. Furthermore, we show the power of our approach proving general results that lead to polynomial recognition of certain graph classes. en
dc.format.extent 53-64 es
dc.language en es
dc.subject Helly graphs es
dc.subject Intersection graphs es
dc.title Algebraic theory for the clique operator en
dc.type Articulo es
sedici.identifier.other doi:10.1590/S0104-65002001000200008 es
sedici.identifier.other eid:2-s2.0-52549088128 es
sedici.identifier.issn 0104-6500 es
sedici.creator.person Gutiérrez, Marisa es
sedici.creator.person Meidanis, João es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of the Brazilian Computer Society es
sedici.relation.journalVolumeAndIssue vol. 7, no. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)