Let ε be a cocomplete topos. We show that if the exact completion of ε is a topos then every indecomposable object in ε is an atom. As a corollary we characterize the locally connected Grothendieck toposes whose exact completions are toposes. This result strengthens both the Lawvere-Schanuel characterization of Boolean presheaf toposes and Hofstra's characterization of the locally connected Grothendieck toposes whose exact completion is a Grothendieck topos. We also show that for any topological space X, the exact completion of Sh (X) is a topos if and only if X is discrete. The corollary in this case characterizes the Grothendieck toposes with enough points whose exact completions are toposes.
Información general
Fecha de publicación:2007
Idioma del documento:Inglés
Revista:Journal of Pure and Applied Algebra; vol. 210, no. 2
Institución de origen:Laboratorio de Investigación y Formación en Informática Avanzada
Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)