Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-10-15T14:15:05Z
dc.date.available 2019-10-15T14:15:05Z
dc.date.issued 2007
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/83247
dc.description.abstract Given an r × r complex matrix T ,ifT = U|T | is the polar decomposition of T , then, the Aluthge transform is defined by Δ(T)=|T |1/2U|T |1/2. Let Δn(T ) denote the n-times iterated Aluthge transform of T ,i.e.Δ0 (T ) = T and Δn(T ) = Δ(Δn-1(T )), n ∈ N. We prove that the sequence {Δn(T )}n∈N converges for every r × r diagonalizable matrix T .We show that the limit Δ∞(·) is a map of class C ∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues. en
dc.format.extent 255-278 es
dc.language en es
dc.subject Aluthge transform es
dc.subject Polar decomposition es
dc.subject Similarity orbit es
dc.subject Stable manifold theorem es
dc.title Convergence of the iterated Aluthge transform sequence for diagonalizable matrices en
dc.type Articulo es
sedici.identifier.other doi:10.1016/j.aim.2007.05.009 es
sedici.identifier.other eid:2-s2.0-34548179910 es
sedici.identifier.issn 0001-8708 es
sedici.creator.person Antezana, Jorge Abel es
sedici.creator.person Pujals, Enrique R. es
sedici.creator.person Stojanoff, Demetrio es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Advances in Mathematics es
sedici.relation.journalVolumeAndIssue vol. 216, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)