In this article, we discuss existing literature on DSS in agriculture, on DSS that use data available in the Semantic Web, and on Semantic Web initiatives focusing on agriculture information. Our goal is to assess the readiness of the Semantic Web as a platform to empower DSS that can keep risk and uncertainty in agriculture under control. Key agricultural activities targeted by DSS reported in literature are nutrient management, insect and pest management, land use and planning, environmental change and forecasting, and water and drought management. The most relevant use of Semantic Web in DSS, is in data analysis, as a means of making DSS more intelligent. There are initiatives to produce vocabularies and semantic repositories in the domain of agriculture. However, data and models are still isolated in specific domain repositories, and interoperability is still weak.