Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-10-16T15:48:58Z
dc.date.available 2019-10-16T15:48:58Z
dc.date.issued 2004
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/83388
dc.description.abstract Using a bijection between the set BH of all Bessel sequences in a (separable) Hilbert space H and the space L(ℓ2, H) of all (bounded linear) operators from ℓ2 to H, we endow the set F of all frames in H with a natural topology for which we determine the connected components of F. We show that each component is a homogeneous space of the group GL(ℓ2) of invertible operators of ℓ2. This geometrical result shows that every smooth curve in F can be lifted to a curve in GL(ℓ2): given a smooth curve γ in F such that γ(0) = ξ, there exists a smooth curve γ in GL(ℓ2) such that γ = ξ, where the dot indicates the action of GL(ℓ2) over F. We also present a similar study of the set of Riesz sequences. en
dc.language en es
dc.subject Bessel sequence es
dc.subject Epimorphisms es
dc.subject Fibre bundle es
dc.subject Frame es
dc.subject Riesz sequence es
dc.title Geometry of epimorphisms and frames en
dc.type Articulo es
sedici.identifier.other doi:10.1090/S0002-9939-04-07380-0 es
sedici.identifier.other eid:2-s2.0-2942672788 es
sedici.identifier.issn 0002-9939 es
sedici.creator.person Corach, Gustavo es
sedici.creator.person Pacheco, Miriam es
sedici.creator.person Stojanoff, Demetrio es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Proceedings of the American Mathematical Society es
sedici.relation.journalVolumeAndIssue vol. 132, no. 7 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)