Busque entre los 164349 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-10-17T21:47:49Z | |
dc.date.available | 2019-10-17T21:47:49Z | |
dc.date.issued | 2004 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/83543 | |
dc.description.abstract | The (dual) Dold-Kan correspondence says that there is an equivalence of categories K: Ch≥0→AbΔ between nonnegatively graded cochain complexes and cosimplicial abelian groups, which is inverse to the normalization functor. We show that the restriction of K to DG-rings can be equipped with an associative product and that the resulting functor DGR*→RingsΔ, although not itself an equivalence, does induce one at the level of homotopy categories. In other words both DGR* and RingsΔ are Quillen closed model categories and the total left derived functor of K is an equivalence: LK: Ho DGR* Ho RingsΔ. The dual of this result for chain DG and simplicial rings was obtained independently by Schwede and Shipley, Algebraic and Geometric Topology 3 (2003) 287, through different methods. Our proof is based on a functor Q:DGR*→RingsΔ, naturally homotopy equivalent to K, and which preserves the closed model structure. It also has other interesting applications. For example, we use Q to prove a noncommutative version of the Hochschild-Kostant-Rosenberg and Loday-Quillen theorems. Our version applies to the cyclic module [n] ∐nRS that arises from a homomorphism R→S of not necessarily commutative rings, using the coproduct ∐R of associative R-algebras. As another application of the properties of Q, we obtain a simple, braid-free description of a product on the tensor power S⊗Rn originally defined by Nuss K-theory 12 (1997) 23, using braids. | en |
dc.format.extent | 119-142 | es |
dc.language | en | es |
dc.subject | Álgebra | es |
dc.title | Cosimplicial versus DG-rings: A version of the Dold-Kan correspondence | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1016/j.jpaa.2003.11.009 | es |
sedici.identifier.other | eid:2-s2.0-1842733479 | es |
sedici.identifier.issn | 0022-4049 | es |
sedici.creator.person | Castiglioni, José Luis | es |
sedici.creator.person | Cortiñas, Guillermo Horacio | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Journal of Pure and Applied Algebra | es |
sedici.relation.journalVolumeAndIssue | vol. 191, no. 1-2 | es |