Busque entre los 168782 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-10-28T15:04:34Z | |
dc.date.available | 2019-10-28T15:04:34Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/84202 | |
dc.description.abstract | The main objective of this paper is to prove in full generality the following two facts: A. For an operad O in Ab, let A be a simplicial O-algebra such that Am is generated as an O-ideal by (∑i = 0m-1 si (Am-1)), for m > 1, and let NA be the Moore complex of A. Then d(NmA) = ∑Iγ (Op⊗ ∩ i∈I1 ker di ⊗ ⋯ ⊗ ∩ i∈Ip ker di) where the sum runs over those partitions of [m - 1], I = (I1, ..., Ip), p ≥ 1, and γ is the action of O on A. B. Let G be a simplicial group with Moore complex NG in which Gn is generated as a normal subgroup by the degenerate elements in dimensionn > 1, then d (NnG) = ∏I, J [∩i∈I ker di, ∩i∈J ker dj], for I, J ⊆ [n - 1] with I ∪ J = [n - 1]. In both cases, di is the i-th face of the corresponding simplicial object. The former result completes and generalizes results from Akça and Arvasi [I. Akça, Z. Arvasi, Simplicial and crossed Lie algebras, Homology Homotopy Appl. 4 (1) (2002) 43-57], and Arvasi and Porter [Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ. 3 (1) (1997) 1-23]; the latter completes a result from Mutlu and Porter [A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categ. 4 (7) (1998) 148-173]. Our approach to the problem is different from that of the cited works. We have first succeeded with a proof for the case of algebras over an operad by introducing a different description of the inverse of the normalization functor N:AbΔop → Ch≥ 0. For the case of simplicial groups, we have then adapted the construction for the inverse equivalence used for algebras to get a simplicial group NG ⊠ Λ from the Moore complex N G of a simplicial group G. This construction could be of interest in itself. | en |
dc.format.extent | 2115-2128 | es |
dc.language | en | es |
dc.subject | Peiffer elements | es |
dc.subject | algebras | es |
dc.subject | simplicial groups | es |
dc.title | Peiffer elements in simplicial groups and algebras | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1016/j.jpaa.2007.11.016 | es |
sedici.identifier.other | eid:2-s2.0-43949094828 | es |
sedici.identifier.issn | 0022-4049 | es |
sedici.creator.person | Castiglioni, José Luis | es |
sedici.creator.person | Ladra, M. | es |
sedici.subject.materias | Ciencias Exactas | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Journal of Pure and Applied Algebra | es |
sedici.relation.journalVolumeAndIssue | vol. 212, no. 9 | es |
sedici.rights.sherpa | * RoMEO: verde* Pre-print del autor: can* Post-print del autor: can* Versión de editor/PDF:cannot* Condiciones:>>Authors pre-print on any website, including arXiv and RePEC>>Author's post-print on author's personal website immediately>>Author's post-print on open access repository after an embargo period of between 12 months and 48 months>>Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months>>Author's post-print may be used to update arXiv and RepEC>>La versión de editor/PDF no puede utilizarse>>Debe enlazar a la versión de editor con DOI>>Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License>>Publisher last reviewed on 03/06/2015* Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0022-4049/es/ |