Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-10-28T15:04:34Z
dc.date.available 2019-10-28T15:04:34Z
dc.date.issued 2008
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/84202
dc.description.abstract The main objective of this paper is to prove in full generality the following two facts: A. For an operad O in Ab, let A be a simplicial O-algebra such that Am is generated as an O-ideal by (∑i = 0m-1 si (Am-1)), for m > 1, and let NA be the Moore complex of A. Then d(NmA) = ∑Iγ (Op⊗ ∩ i∈I1 ker di ⊗ ⋯ ⊗ ∩ i∈Ip ker di) where the sum runs over those partitions of [m - 1], I = (I1, ..., Ip), p ≥ 1, and γ is the action of O on A. B. Let G be a simplicial group with Moore complex NG in which Gn is generated as a normal subgroup by the degenerate elements in dimensionn > 1, then d (NnG) = ∏I, J [∩i∈I ker di, ∩i∈J ker dj], for I, J ⊆ [n - 1] with I ∪ J = [n - 1]. In both cases, di is the i-th face of the corresponding simplicial object. The former result completes and generalizes results from Akça and Arvasi [I. Akça, Z. Arvasi, Simplicial and crossed Lie algebras, Homology Homotopy Appl. 4 (1) (2002) 43-57], and Arvasi and Porter [Z. Arvasi, T. Porter, Higher dimensional Peiffer elements in simplicial commutative algebras, Theory Appl. Categ. 3 (1) (1997) 1-23]; the latter completes a result from Mutlu and Porter [A. Mutlu, T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory Appl. Categ. 4 (7) (1998) 148-173]. Our approach to the problem is different from that of the cited works. We have first succeeded with a proof for the case of algebras over an operad by introducing a different description of the inverse of the normalization functor N:AbΔop → Ch≥ 0. For the case of simplicial groups, we have then adapted the construction for the inverse equivalence used for algebras to get a simplicial group NG ⊠ Λ from the Moore complex N G of a simplicial group G. This construction could be of interest in itself. en
dc.format.extent 2115-2128 es
dc.language en es
dc.subject Peiffer elements es
dc.subject algebras es
dc.subject simplicial groups es
dc.title Peiffer elements in simplicial groups and algebras en
dc.type Articulo es
sedici.identifier.other doi:10.1016/j.jpaa.2007.11.016 es
sedici.identifier.other eid:2-s2.0-43949094828 es
sedici.identifier.issn 0022-4049 es
sedici.creator.person Castiglioni, José Luis es
sedici.creator.person Ladra, M. es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Pure and Applied Algebra es
sedici.relation.journalVolumeAndIssue vol. 212, no. 9 es
sedici.rights.sherpa * RoMEO: verde* Pre-print del autor: can* Post-print del autor: can* Versión de editor/PDF:cannot* Condiciones:>>Authors pre-print on any website, including arXiv and RePEC>>Author's post-print on author's personal website immediately>>Author's post-print on open access repository after an embargo period of between 12 months and 48 months>>Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months>>Author's post-print may be used to update arXiv and RepEC>>La versión de editor/PDF no puede utilizarse>>Debe enlazar a la versión de editor con DOI>>Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License>>Publisher last reviewed on 03/06/2015* Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0022-4049/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)