Busque entre los 166835 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-10-29T13:40:32Z | |
dc.date.available | 2019-10-29T13:40:32Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/84288 | |
dc.description.abstract | Given a closed subspace S of a Hilbert space H and a (bounded) selfadjoint operator B acting on H, a min-max representation of the shorted operator (or Schur complement) of B to S is obtained under compatibility hypotheses. Also, an extension of Pekarev's formula is given. | en |
dc.format.extent | 1899-1911 | es |
dc.language | en | es |
dc.subject | Schur complement | es |
dc.subject | Selfadjoint operator | es |
dc.subject | Shorted operator | es |
dc.title | Shorting selfadjoint operators in Hilbert spaces | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1016/j.laa.2007.10.034 | es |
sedici.identifier.other | eid:2-s2.0-39549084513 | es |
sedici.identifier.issn | 0024-3795 | es |
sedici.creator.person | Giribet, Juan Ignacio | es |
sedici.creator.person | Maestripieri, Alejandra Laura | es |
sedici.creator.person | Martínez Pería, Francisco Dardo | es |
sedici.subject.materias | Ciencias Exactas | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Linear Algebra and Its Applications | es |
sedici.relation.journalVolumeAndIssue | vol. 428, no. 8-9 | es |
sedici.rights.sherpa | * RoMEO: verde* Pre-print del autor: can* Post-print del autor: can* Versión de editor/PDF:cannot* Condiciones:>>Authors pre-print on any website, including arXiv and RePEC>>Author's post-print on author's personal website immediately>>Author's post-print on open access repository after an embargo period of between 12 months and 48 months>>Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months>>Author's post-print may be used to update arXiv and RepEC>>La versión de editor/PDF no puede utilizarse>>Debe enlazar a la versión de editor con DOI>>Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License>>Publisher last reviewed on 03/06/2015* Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0024-3795/es/ |