Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-10-29T14:20:15Z
dc.date.available 2019-10-29T14:20:15Z
dc.date.issued 2011-01-30
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/84303
dc.description.abstract Given an r×r complex matrix T, if T=U|T| is the polar decomposition of T, then, the Aluthge transform is defined by Δ(T)=|T|1/2U|T|1/2. Let Δn(T) denote the n-times iterated Aluthge transform of T, i.e., Δ0(T)=T and Δn(T)=Δ(Δn-1(T)), nεN. We prove that the sequence {Δn(T)}nεN converges for every r×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. We also analyze the regularity of the limit function. en
dc.format.extent 1591-1620 es
dc.language en es
dc.subject Aluthge transform es
dc.subject Polar decomposition es
dc.subject Similarity orbit es
dc.subject Stable manifold theorem es
dc.title The iterated Aluthge transforms of a matrix converge en
dc.type Articulo es
sedici.identifier.other http://dx.doi.org/10.1016/j.aim.2010.08.012 es
sedici.identifier.issn 0001-8708 es
sedici.creator.person Antezana, Jorge Abel es
sedici.creator.person Pujals, Enrique R. es
sedici.creator.person Stojanoff, Demetrio es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Advances in Mathematics es
sedici.relation.journalVolumeAndIssue vol. 226, no. 2 es
sedici.rights.sherpa * Color: verde* Pre-print del autor: si* Post-print del autor: si* Versión de editor/PDF:no* Condiciones:>>Authors pre-print on any website, including arXiv and RePEC>>Author's post-print on author's personal website immediately>>Author's post-print on open access repository after an embargo period of between 12 months and 48 months>>Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months>>Author's post-print may be used to update arXiv and RepEC>>La versión de editor/PDF no puede utilizarse>>Debe enlazar a la versión de editor con DOI>>Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License>>Publisher last reviewed on 03/06/2015* Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0001-8708/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)