Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-11-05T15:02:04Z
dc.date.available 2019-11-05T15:02:04Z
dc.date.issued 2002
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/84951
dc.description.abstract Given a closed subspace L of a Hilbert space ℋ and a bounded linear operator A ∈ L(ℋ) which is positive, consider the set of all A-self-adjoint projections onto Y: ℘(A,Y) = {Q ∈ L(ℋ): Q2 = Q, Q(ℋ) = Y, AQ = Q*A}. In addition, if ℋ1 is another Hilbert space, T : ℋ → ℋ1 is a bounded linear operator such that T*T = A and ξ ∈ ℋ, consider the set of (T, Y) spline interpolants to ξ: sp(T, Y, ξ) = { η ε ξ + Y : ∥Tη∥ = min ∥T(ξ + σ)∥}. A strong relationship exists between ℘(A, Y) and s p(T, Y, ξ). In fact, ∥(A, Y) is not empty if and only if s p(T, Y, ξ) is not empty for every ξ ∈ ℋ. In this case, for any ξ ∈ ℋ\Y it holds s p(T, Y, ξ) = {(1 - Q)ξ:Q ∈ ℘(A, Y)} and for any ξ ∈ ℋ, the unique vector of s p(T, Y, ξ) with minimal norm is (1 - PA,Y)ξ, where PA,L is a distinguished element of ℘(A, Y). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators. en
dc.format.extent 189-206 es
dc.language en es
dc.title Oblique projections and abstract splines en
dc.type Articulo es
sedici.identifier.other doi:10.1006/jath.2002.3696 es
sedici.identifier.other eid:2-s2.0-0036696336 es
sedici.identifier.issn 0021-9045 es
sedici.creator.person Corach, Gustavo es
sedici.creator.person Maestripieri, A. es
sedici.creator.person Stojanoff, Demetrio es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Approximation Theory es
sedici.relation.journalVolumeAndIssue vol. 117, no. 2 es
sedici.rights.sherpa * RoMEO: verde* Pre-print del autor: can* Post-print del autor: can* Versión de editor/PDF:cannot* Condiciones:>>Authors pre-print on any website, including arXiv and RePEC>>Author's post-print on author's personal website immediately>>Author's post-print on open access repository after an embargo period of between 12 months and 48 months>>Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months>>Author's post-print may be used to update arXiv and RepEC>>La versión de editor/PDF no puede utilizarse>>Debe enlazar a la versión de editor con DOI>>Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License>>Publisher last reviewed on 03/06/2015* Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0021-9045/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)