Busque entre los 168532 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-11-05T15:02:04Z | |
dc.date.available | 2019-11-05T15:02:04Z | |
dc.date.issued | 2002 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/84951 | |
dc.description.abstract | Given a closed subspace L of a Hilbert space ℋ and a bounded linear operator A ∈ L(ℋ) which is positive, consider the set of all A-self-adjoint projections onto Y: ℘(A,Y) = {Q ∈ L(ℋ): Q2 = Q, Q(ℋ) = Y, AQ = Q*A}. In addition, if ℋ1 is another Hilbert space, T : ℋ → ℋ1 is a bounded linear operator such that T*T = A and ξ ∈ ℋ, consider the set of (T, Y) spline interpolants to ξ: sp(T, Y, ξ) = { η ε ξ + Y : ∥Tη∥ = min ∥T(ξ + σ)∥}. A strong relationship exists between ℘(A, Y) and s p(T, Y, ξ). In fact, ∥(A, Y) is not empty if and only if s p(T, Y, ξ) is not empty for every ξ ∈ ℋ. In this case, for any ξ ∈ ℋ\Y it holds s p(T, Y, ξ) = {(1 - Q)ξ:Q ∈ ℘(A, Y)} and for any ξ ∈ ℋ, the unique vector of s p(T, Y, ξ) with minimal norm is (1 - PA,Y)ξ, where PA,L is a distinguished element of ℘(A, Y). These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators. | en |
dc.format.extent | 189-206 | es |
dc.language | en | es |
dc.title | Oblique projections and abstract splines | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1006/jath.2002.3696 | es |
sedici.identifier.other | eid:2-s2.0-0036696336 | es |
sedici.identifier.issn | 0021-9045 | es |
sedici.creator.person | Corach, Gustavo | es |
sedici.creator.person | Maestripieri, A. | es |
sedici.creator.person | Stojanoff, Demetrio | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Journal of Approximation Theory | es |
sedici.relation.journalVolumeAndIssue | vol. 117, no. 2 | es |
sedici.rights.sherpa | * RoMEO: verde* Pre-print del autor: can* Post-print del autor: can* Versión de editor/PDF:cannot* Condiciones:>>Authors pre-print on any website, including arXiv and RePEC>>Author's post-print on author's personal website immediately>>Author's post-print on open access repository after an embargo period of between 12 months and 48 months>>Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months>>Author's post-print may be used to update arXiv and RepEC>>La versión de editor/PDF no puede utilizarse>>Debe enlazar a la versión de editor con DOI>>Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License>>Publisher last reviewed on 03/06/2015* Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0021-9045/es/ |