Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-11-06T14:06:15Z
dc.date.available 2019-11-06T14:06:15Z
dc.date.issued 2014
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/85038
dc.description.abstract A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution. en
dc.language en es
dc.subject Particle tracking detectors es
dc.subject Particle tracking detectors (solid-state detectors) es
dc.title A neural network clustering algorithm for the ATLAS silicon pixel detector en
dc.type Articulo es
sedici.identifier.other doi:10.1088/1748-0221/9/09/P09009 es
sedici.identifier.other eid:2-s2.0-84907683450 es
sedici.identifier.issn 1748-0221 es
sedici.creator.person Alconada Verzini, María Josefina es
sedici.creator.person Alonso, Francisco es
sedici.creator.person Anduaga, Xabier Sebastián es
sedici.creator.person Dova, María Teresa es
sedici.creator.person Monticelli, Fernando Gabriel es
sedici.creator.person Wahlberg, Hernán Pablo es
sedici.description.note La lista completa de autores que integran el documento puede consultarse en el archivo. es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física La Plata es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 3.0 Unported (CC BY 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by/3.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Instrumentation es
sedici.relation.journalVolumeAndIssue vol. 9, no. 9 es
sedici.rights.sherpa * Color: green * Pre-print del autor: si * Post-print del autor: si * Versión de editor/PDF:no * Condiciones: >>Pre-print on author's personal website, repository, non-commercial scientific social network, arXiv or non-commercial website >>Pre-print si not be updated after submission >>Post-print on author's personal website or Arxiv immediately >>Post-print on institutional website, institutional repository, subject-based repository, bioRxiv, PubMed Central, non-commercial scientific social network or third party eprint servers after 12 months embargo >>Publisher's version/PDF no be used >>Published source must be acknowledged with citation >>Must link to publisher version with DOI >>Set statements to accompany different versions (see policy) >>Post-print is not permitted on commercial scientific social networks e.g. ResearchGate, Mendely and Academia.edu >>Articles si not be deposited under an open access license or creative commons license >>Authors may make a closed deposit of post-print on a non-commercial repository within three months of date of acceptance. * Link a Sherpa: http://sherpa.ac.uk/romeo/issn/1748-0221/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 3.0 Unported (CC BY 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 3.0 Unported (CC BY 3.0)