Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-11-07T14:24:26Z
dc.date.available 2019-11-07T14:24:26Z
dc.date.issued 2013
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/85121
dc.description.abstract Let X,Y be normal bounded operators on a Hilbert space such that e X=eY. If the spectra of X and Y are contained in the strip S of the complex plane defined by |I(z)|≤π, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and e X=eY. If X is an unbounded self-adjoint operator, which does not have (2k+1)π,k∈ℤ, as eigenvalues, and Y is normal with spectrum in S satisfying eiX=eY, then Y∈{ e iX}″. We give alternative proofs and generalizations of results on normal operator exponentials proved by Schmoeger. en
dc.format.extent 455-462 es
dc.language en es
dc.subject Exponential map es
dc.subject Normal operator es
dc.subject Spectral theorem es
dc.title On normal operator logarithms en
dc.type Articulo es
sedici.identifier.other doi:10.1016/j.laa.2013.03.026 es
sedici.identifier.other eid:2-s2.0-84879888082 es
sedici.identifier.issn 0024-3795 es
sedici.creator.person Chiumiento, Eduardo Hernán es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Linear Algebra and Its Applications es
sedici.relation.journalVolumeAndIssue vol. 439, no. 2 es
sedici.rights.sherpa * Color: green * Pre-print del autor: si * Post-print del autor: si * Versión de editor/PDF:no * Condiciones: >>Authors pre-print on any website, including arXiv and RePEC >>Author's post-print on author's personal website immediately >>Author's post-print on open access repository after an embargo period of between 12 months and 48 months >>Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months >>Author's post-print may be used to update arXiv and RepEC >>Publisher's version/PDF no be used >>Must link to publisher version with DOI >>Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License >>Publisher last reviewed on 03/06/2015 * Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0024-3795/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)