Busque entre los 169101 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-11-07T14:24:26Z | |
dc.date.available | 2019-11-07T14:24:26Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/85121 | |
dc.description.abstract | Let X,Y be normal bounded operators on a Hilbert space such that e X=eY. If the spectra of X and Y are contained in the strip S of the complex plane defined by |I(z)|≤π, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and e X=eY. If X is an unbounded self-adjoint operator, which does not have (2k+1)π,k∈ℤ, as eigenvalues, and Y is normal with spectrum in S satisfying eiX=eY, then Y∈{ e iX}″. We give alternative proofs and generalizations of results on normal operator exponentials proved by Schmoeger. | en |
dc.format.extent | 455-462 | es |
dc.language | en | es |
dc.subject | Exponential map | es |
dc.subject | Normal operator | es |
dc.subject | Spectral theorem | es |
dc.title | On normal operator logarithms | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1016/j.laa.2013.03.026 | es |
sedici.identifier.other | eid:2-s2.0-84879888082 | es |
sedici.identifier.issn | 0024-3795 | es |
sedici.creator.person | Chiumiento, Eduardo Hernán | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Linear Algebra and Its Applications | es |
sedici.relation.journalVolumeAndIssue | vol. 439, no. 2 | es |
sedici.rights.sherpa | * Color: green
* Pre-print del autor: si
* Post-print del autor: si
* Versión de editor/PDF:no
* Condiciones:
>>Authors pre-print on any website, including arXiv and RePEC
>>Author's post-print on author's personal website immediately
>>Author's post-print on open access repository after an embargo period of between |