Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-11-13T13:22:42Z
dc.date.available 2019-11-13T13:22:42Z
dc.date.issued 2013
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/85460
dc.description.abstract In this paper we consider two problems in frame theory. On the one hand, given a set of vectors F we describe the spectral and geometrical structure of optimal completions of F by a finite family of vectors with prescribed norms, where optimality is measured with respect to majorization. In particular, these optimal completions are the minimizers of a family of convex functionals that include the mean square error and the Benedetto-Fickus frame potential. On the other hand, given a fixed frame F we describe explicitly the spectral and geometrical structure of optimal frames G that are in duality with F and such that the Frobenius norms of their analysis operators is bounded from below by a fixed constant. In this case, optimality is measured with respect to submajorization of the frames operators. Our approach relies on the description of the spectral and geometrical structure of matrices that minimize submajorization on sets that are naturally associated with the problems above. en
dc.format.extent 201-223 es
dc.language en es
dc.subject Dual frames es
dc.subject Frame completions es
dc.subject Frames es
dc.subject Majorization es
dc.subject Schur-Horn es
dc.title Optimal dual frames and frame completions for majorization en
dc.type Articulo es
sedici.identifier.other doi:10.1016/j.acha.2012.03.011 es
sedici.identifier.other eid:2-s2.0-84872356008 es
sedici.identifier.issn 1063-5203 es
sedici.creator.person Massey, Pedro Gustavo es
sedici.creator.person Ruiz, Mariano Andrés es
sedici.creator.person Stojanoff, Demetrio es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Applied and Computational Harmonic Analysis es
sedici.relation.journalVolumeAndIssue vol. 34, no. 2 es
sedici.rights.sherpa * Color: green * Pre-print del autor: si * Post-print del autor: si * Versión de editor/PDF:no * Condiciones: >>Authors pre-print on any website, including arXiv and RePEC >>Author's post-print on author's personal website immediately >>Author's post-print on open access repository after an embargo period of between 12 months and 48 months >>Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months >>Author's post-print may be used to update arXiv and RepEC >>Publisher's version/PDF no be used >>Must link to publisher version with DOI >>Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License >>Publisher last reviewed on 03/06/2015 * Link a Sherpa: http://sherpa.ac.uk/romeo/issn/1063-5203/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)