Busque entre los 169345 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-11-13T18:34:19Z | |
dc.date.available | 2019-11-13T18:34:19Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/85561 | |
dc.description.abstract | An (h,s,t)-representation of a graph G consists of a collection of subtrees of a tree T, where each subtree corresponds to a vertex of G such that (i) the maximum degree of T is at most h, (ii) every subtree has maximum degree at most s, (iii) there is an edge between two vertices in the graph G if and only if the corresponding subtrees have at least t vertices in common in T. The class of graphs that has an (h,s,t)-representation is denoted by [h,s,t]. An undirected graph G is called a VPT graph if it is the vertex intersection graph of a family of paths in a tree. Thus, [h,2,1] graphs are the VPT graphs that can be represented in a tree with maximum degree at most h. In this paper we characterize [h,2,1] graphs using chromatic number. We show that the problem of deciding whether a given VPT graph belongs to [h,2,1] is NP-complete, while the problem of deciding whether the graph belongs to [h,2,1]-[h-1,2,1] is NP-hard. Both problems remain hard even when restricted to VPT∩Split. Additionally, we present a non-trivial subclass of VPT∩Split in which these problems are polynomial time solvable. | en |
dc.format.extent | 70-77 | es |
dc.language | en | es |
dc.subject | Intersection graphs | es |
dc.subject | Recognition problems | es |
dc.subject | Representations on trees | es |
dc.subject | VPT graphs | es |
dc.title | Recognizing vertex intersection graphs of paths on bounded degree trees | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1016/j.dam.2013.08.004 | es |
sedici.identifier.other | eid:2-s2.0-84888013626 | es |
sedici.identifier.issn | 0166-218X | es |
sedici.creator.person | Alcón, Liliana Graciela | es |
sedici.creator.person | Gutiérrez, Marisa | es |
sedici.creator.person | Mazzoleni, María Pía | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Discrete Applied Mathematics | es |
sedici.relation.journalVolumeAndIssue | vol. 162 | es |
sedici.rights.sherpa | * Color: green
* Pre-print del autor: si
* Post-print del autor: si
* Versión de editor/PDF:no
* Condiciones:
>>Authors pre-print on any website, including arXiv and RePEC
>>Author's post-print on author's personal website immediately
>>Author's post-print on open access repository after an embargo period of between |