Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-11-13T18:34:19Z
dc.date.available 2019-11-13T18:34:19Z
dc.date.issued 2014
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/85561
dc.description.abstract An (h,s,t)-representation of a graph G consists of a collection of subtrees of a tree T, where each subtree corresponds to a vertex of G such that (i) the maximum degree of T is at most h, (ii) every subtree has maximum degree at most s, (iii) there is an edge between two vertices in the graph G if and only if the corresponding subtrees have at least t vertices in common in T. The class of graphs that has an (h,s,t)-representation is denoted by [h,s,t]. An undirected graph G is called a VPT graph if it is the vertex intersection graph of a family of paths in a tree. Thus, [h,2,1] graphs are the VPT graphs that can be represented in a tree with maximum degree at most h. In this paper we characterize [h,2,1] graphs using chromatic number. We show that the problem of deciding whether a given VPT graph belongs to [h,2,1] is NP-complete, while the problem of deciding whether the graph belongs to [h,2,1]-[h-1,2,1] is NP-hard. Both problems remain hard even when restricted to VPT∩Split. Additionally, we present a non-trivial subclass of VPT∩Split in which these problems are polynomial time solvable. en
dc.format.extent 70-77 es
dc.language en es
dc.subject Intersection graphs es
dc.subject Recognition problems es
dc.subject Representations on trees es
dc.subject VPT graphs es
dc.title Recognizing vertex intersection graphs of paths on bounded degree trees en
dc.type Articulo es
sedici.identifier.other doi:10.1016/j.dam.2013.08.004 es
sedici.identifier.other eid:2-s2.0-84888013626 es
sedici.identifier.issn 0166-218X es
sedici.creator.person Alcón, Liliana Graciela es
sedici.creator.person Gutiérrez, Marisa es
sedici.creator.person Mazzoleni, María Pía es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Discrete Applied Mathematics es
sedici.relation.journalVolumeAndIssue vol. 162 es
sedici.rights.sherpa * Color: green * Pre-print del autor: si * Post-print del autor: si * Versión de editor/PDF:no * Condiciones: >>Authors pre-print on any website, including arXiv and RePEC >>Author's post-print on author's personal website immediately >>Author's post-print on open access repository after an embargo period of between 12 months and 48 months >>Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months >>Author's post-print may be used to update arXiv and RepEC >>Publisher's version/PDF no be used >>Must link to publisher version with DOI >>Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License >>Publisher last reviewed on 03/06/2015 * Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0166-218X/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)