Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-11-20T18:02:34Z
dc.date.available 2019-11-20T18:02:34Z
dc.date.issued 2015
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/85830
dc.description.abstract An undirected graph G is called a VPT graph if it is the vertex intersection graph of a family of paths in a tree. The class of graphs which admit a VPT representation in a host tree with maximum degree at most h is denoted by [h,2,1]. The classes [h,2,1] are closed under taking induced subgraphs, therefore each one can be characterized by a family of minimal forbidden induced subgraphs. In this paper we associate the minimal forbidden induced subgraphs for [h,2,1] which are VPT with (color) h-critical graphs. We describe how to obtain minimal forbidden induced subgraphs from critical graphs, even more, we show that the family of graphs obtained using our procedure is exactly the family of VPT minimal forbidden induced subgraphs for [h,2,1]. The members of this family together with the minimal forbidden induced subgraphs for VPT (Lévêque et al., 2009; Tondato, 2009), are the minimal forbidden induced subgraphs for [h,2,1], with h ≥ 3. By taking h=3 we obtain a characterization by minimal forbidden induced subgraphs of the class V PT∩EPT=EPT∩Chordal=[3,2,2]=[3,2,1] (see Golumbic and Jamison, 1985). en
dc.format.extent 103-110 es
dc.language en es
dc.subject Critical graphs es
dc.subject Forbidden subgraphs es
dc.subject Intersection graphs es
dc.subject Representations on trees es
dc.subject VPT graphs es
dc.title Characterizing paths graphs on bounded degree trees by minimal forbidden induced subgraphs en
dc.type Articulo es
sedici.identifier.other doi:10.1016/j.disc.2014.08.020 es
sedici.identifier.other eid:2-s2.0-84908178911 es
sedici.identifier.issn 0012-365X es
sedici.creator.person Alcón, Liliana Graciela es
sedici.creator.person Gutiérrez, Marisa es
sedici.creator.person Mazzoleni, María Pía es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Discrete Mathematics es
sedici.relation.journalVolumeAndIssue vol. 338 es
sedici.rights.sherpa * Color: green * Pre-print del autor: can * Post-print del autor: can * Versión de editor/PDF:cannot * Condiciones: >>Authors pre-print on any website, including arXiv and RePEC >>Author's post-print on author's personal website immediately >>Author's post-print on open access repository after an embargo period of between 12 months and 48 months >>Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months >>Author's post-print may be used to update arXiv and RepEC >>Publisher's version/PDF cannot be used >>Must link to publisher version with DOI >>Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License >>Publisher last reviewed on 03/06/2015 * Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0012-365X/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)