Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-12-09T18:30:13Z
dc.date.available 2019-12-09T18:30:13Z
dc.date.issued 2015
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/87080
dc.description.abstract Let H=H+⊕H- be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E+, E- be the projections onto H+ and H-. We study the set Pcc of orthogonal projections P in H which essentially commute with E+ (or equivalently with E-), i.e.[P,E+]=PE+-E+Pis compact. By means of the projection π onto the Calkin algebra, one sees that these projections P∈Pcc fall into nine classes. Four discrete classes, which correspond to π(P) being 0, 1, π(E+) or π(E-), and five essential classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H+ and the Sato Grassmannian of H-. Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected.We are interested in the geometric structure of Pcc, being the set of selfadjoint projections of the C*-algebra Bcc of operators in B(H) which essentially commute with E+. In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that the Hopf-Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found. en
dc.format.extent 336-362 es
dc.language en es
dc.subject Compact operators es
dc.subject Fredholm index es
dc.subject Geodesics es
dc.subject Projections es
dc.title Essentially commuting projections en
dc.type Articulo es
sedici.identifier.other doi:10.1016/j.jfa.2014.10.003 es
sedici.identifier.other eid:2-s2.0-84919479861 es
sedici.identifier.issn 0022-1236 es
sedici.creator.person Andruchow, Esteban es
sedici.creator.person Chiumiento, Eduardo Hernán es
sedici.creator.person Di Iorio y Lucero, M. E. es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Functional Analysis es
sedici.relation.journalVolumeAndIssue vol. 268, no. 2 es
sedici.rights.sherpa * Color: green * Pre-print del autor: can * Post-print del autor: can * Versión de editor/PDF:cannot * Condiciones: >>Authors pre-print on any website, including arXiv and RePEC >>Author's post-print on author's personal website immediately >>Author's post-print on open access repository after an embargo period of between 12 months and 48 months >>Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months >>Author's post-print may be used to update arXiv and RepEC >>Publisher's version/PDF cannot be used >>Must link to publisher version with DOI >>Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License >>Publisher last reviewed on 03/06/2015 * Link a Sherpa: http://sherpa.ac.uk/romeo/issn/0022-1236/es/


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)