Busque entre los 171119 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2019-12-09T18:30:13Z | |
dc.date.available | 2019-12-09T18:30:13Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/87080 | |
dc.description.abstract | Let H=H+⊕H- be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E+, E- be the projections onto H+ and H-. We study the set Pcc of orthogonal projections P in H which essentially commute with E+ (or equivalently with E-), i.e.[P,E+]=PE+-E+Pis compact. By means of the projection π onto the Calkin algebra, one sees that these projections P∈Pcc fall into nine classes. Four discrete classes, which correspond to π(P) being 0, 1, π(E+) or π(E-), and five essential classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H+ and the Sato Grassmannian of H-. Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected.We are interested in the geometric structure of Pcc, being the set of selfadjoint projections of the C*-algebra Bcc of operators in B(H) which essentially commute with E+. In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that the Hopf-Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found. | en |
dc.format.extent | 336-362 | es |
dc.language | en | es |
dc.subject | Compact operators | es |
dc.subject | Fredholm index | es |
dc.subject | Geodesics | es |
dc.subject | Projections | es |
dc.title | Essentially commuting projections | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1016/j.jfa.2014.10.003 | es |
sedici.identifier.other | eid:2-s2.0-84919479861 | es |
sedici.identifier.issn | 0022-1236 | es |
sedici.creator.person | Andruchow, Esteban | es |
sedici.creator.person | Chiumiento, Eduardo Hernán | es |
sedici.creator.person | Di Iorio y Lucero, M. E. | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Journal of Functional Analysis | es |
sedici.relation.journalVolumeAndIssue | vol. 268, no. 2 | es |
sedici.rights.sherpa | * Color: green
* Pre-print del autor: can
* Post-print del autor: can
* Versión de editor/PDF:cannot
* Condiciones:
>>Authors pre-print on any website, including arXiv and RePEC
>>Author's post-print on author's personal website immediately
>>Author's post-print on open access repository after an embargo period of between |