Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-05-18T16:05:00Z
dc.date.available 2020-05-18T16:05:00Z
dc.date.issued 2017
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/96168
dc.description.abstract Representar numéricamente los cambios de fase implícitos en procesos de cavitación, con las correspondientes transferencias de masa entre fase vapor y fase líquido constituye un desafío importante, que se incrementa cuando el flujo alcanza un régimen turbulento. En este caso el acoplamiento de los modelos de turbulencia y de cavitación, con los utilizados para resolver las ecuaciones de Navier-Stokes, han probado generar dificultades para alcanzar la convergencia de las soluciones, en particular a altos ángulos de ataque. El presente trabajo detalla el estudio realizado mediante simulaciones numéricas bidimensionales sobre un perfil hidrodinámico Clark-Y, mediante el uso del software ANSYS 18.0, reproduciendo ensayos reportados en la bibliografía, con el objetivo de determinar la variación de coeficientes de sustentación y arrastre, y estudiar la evolución e inestabilidad del efecto de cavitación. Tanto los ensayos como las simulaciones numéricas fueron realizados para un nro. de Reynolds constante, de 8.3e5, variando el número de cavitación entre 0.5 y 4, y el ángulo de ataque del perfil entre 2 y 10 grados. Los resultados obtenidos con el modelo de cavitación de Schnerr y Sauer y un modelo de turbulencia k-epsilon Realizable muestran una excelente concordancia con los valores experimentales para pequeños ángulos de ataque, reproduciendo correctamente los coeficientes de sustentación y resistencia, así como el número de cavitación en que este efecto comienza a manifestarse. Sin embargo, a ángulos de ataque mayores, junto con la dificultad para lograr la convergencia de la solución, crece el error en la misma. Por ello se está trabajando actualmente en simulaciones con el modelo de turbulencia k-omega SST, que, si bien demanda mayores recursos computacionales al no utilizar “funciones de pared” y requerir por lo tanto una discretización fina de la capa límite, suele ser más adecuado para la simulación de flujos desprendidos. es
dc.format.extent 1001-1010 es
dc.language es es
dc.subject CFD es
dc.subject Cavitación es
dc.subject Turbulencia es
dc.subject Perfiles hidrodinámicos es
dc.title Estudio numérico de cavitación no-estacionaria en un perfil hidrodinámico es
dc.type Objeto de conferencia es
sedici.identifier.uri https://cimec.org.ar/ojs/index.php/mc/article/view/5314 es
sedici.identifier.issn 2591-3522 es
sedici.creator.person Paparazzo, Diego es
sedici.creator.person Raggi, Rodrigo es
sedici.creator.person Bacchi, Federico es
sedici.creator.person Scarabino, Ana Elena es
sedici.description.note Publicado en: Mecánica Computacional vol. XXXV, no. 17 es
sedici.subject.materias Ingeniería es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ingeniería es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2017-11
sedici.relation.event XXIII Congreso de Métodos Numéricos y sus Aplicaciones (ENIEF) (La Plata, noviembre 2017) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)