Sensor network design problem (SNDP) in process plants includes the determination of which process variables should be measured to achieve a required degree of knowledge about the plant. We propose to solve the SNDP problem in plants of increasing size and complexity using a hybrid algorithm based on Simulated Annealing (HSA) as main metaheuristic and Tabu Search embedded with Strategic Oscillation (SOTS) as a subordinate metaheuristic. We studied the tuning of control parameters in order to improve the HSA performance. Experimental results indicate that a high-quality solution in reasonable computational times can be found by HSA effectively. Moreover, HSA shows good features solving SNDP compared with proposals from the literature.