Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-06-16T19:34:22Z
dc.date.available 2020-06-16T19:34:22Z
dc.date.issued 2017-11
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/98344
dc.description.abstract We study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of π0 as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : E → S, an idempotent monad π0 : E → E such that, for every X in E, π X = 1 if and only if (p* Ω)! : (p* Ω)1 → (p* Ω)X is an isomorphism. For instance, if E is the topological topos (over S = Set), the π0-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the π0-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : E → S, p is pre-cohesive if and only if p* : E → S is cartesian closed. In this case, p! = p* π0 : E → S and the category of π0-algebras coincides with the subcategory p* : E → S. en
dc.format.extent 183-207 es
dc.language en es
dc.subject Axiomatic cohesion es
dc.subject Topology es
dc.title The construction of π₀ in Axiomatic Cohesion en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/57061 es
sedici.identifier.uri http://tcms.org.ge/Journals/TMJ/Volume10/Volume10_3/Abstract/abstract10_3_9.html es
sedici.identifier.other https://dx.doi.org/10.1515/tmj-2017-0108 es
sedici.identifier.other hdl:11336/57061 es
sedici.identifier.issn 1512-0139 es
sedici.creator.person Menni, Matías es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.workflowEdited true es
sedici.relation.journalTitle Tbilisi Mathematical Journal es
sedici.relation.journalVolumeAndIssue vol. 10, no. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)