Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-06-24T14:26:08Z
dc.date.available 2020-06-24T14:26:08Z
dc.date.issued 2014-09
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/98964
dc.description.abstract The cryopreservation process consists of reducing the temperature of the sample to a point where biological stability is achieved. In particular the measurement of the temperature change of the sample is important to calculate cooling rates and to determine if a sample is vitrified or undergoes phase change transition. As soon an object is plunged into liquid nitrogen it enters into a film boiling regime due to the large temperature difference between the object and the liquid nitrogen (LN2). This determines a heat flux from the object to LN2 causing the latter to boil in the immediate vicinity of the object and creating a pocket of nitrogen vapor around the object which acts as an “insulator” and retards further heat transfer. Film boiling is also referred to as the “Leidenfrost effect”. Boiling curves for a specific cryobiological system are scarcely found in the literature due to the small dimensions of the devices used in the process and the experimental limitations. The experimental information such as the time-temperature curve allows the prediction of the surface heat transfer coefficients that govern the cooling process: film, transition and nucleate boiling. In order to predict the surface heat transfer coefficient for each boiling regime the mathematical modeling of the partial differential equations that represent the energy transfer must be implemented, applying convective boundary conditions. In this work the different heat transfer coefficients and the boiling curve of straws filled with ice (at an initial temperature between -2ºC to -9ºC) were experimentally measured when they were immersed in liquid nitrogen; this allowed to determine the existence of different boiling regimes. The application of a numerical finite element program using the software COMSOL was used to predict time-temperature curves and to obtain the surface heat transfer coefficients that control each boiling regime. Independent experiments were carried out using straws that contained a biological fluid (semen+extender), which were initially at room temperature, to further validate the different surface heat transfer coefficients for film and nucleate pool boiling. The program takes into account the variable thermo-physical properties of the biological sample. This constitutes a highly non-linear mathematical problem, as the freezing process evolves with a variable surface heat transfer coefficients as the different boiling regimes occur. The program was experimentally validated contrasting experimental temperatures vs. time with numerical predictions. The numerical program is an important tool in order to correctly assess the heat transfer process and optimize the cryopreservation of straws filled with biological fluids. en
dc.format.extent 2759-2771 es
dc.language en es
dc.subject Cryopreservation es
dc.subject Numerical simulation es
dc.subject Nucleate and film boiling es
dc.subject Surface heat transfer coefficient es
dc.subject Liquid nitrogen es
dc.title Determination of heat transfer coefficients of biological systems during cooling in liquid nitrogen under film and nucleate pool boiling regimes en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/10819 es
sedici.identifier.uri http://www.cimec.org.ar/ojs/index.php/mc/article/view/4867 es
sedici.identifier.other hdl:11336/10819 es
sedici.identifier.issn 1666-6070 es
sedici.creator.person Santos, María Victoria es
sedici.creator.person Sansinena, Marina es
sedici.creator.person Chirife, Jorge es
sedici.creator.person Zaritzky, Noemí Elisabet es
sedici.subject.materias Química es
sedici.description.fulltext true es
mods.originInfo.place Centro de Investigación y Desarrollo en Criotecnología de Alimentos es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Mecanica Computacional es
sedici.relation.journalVolumeAndIssue vol. XXXIII, no. 42 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)