En español
Se ha previsto diversos escenarios para explorar el futuro Sistema de Transporte Aéreo. De acuerdo con EUROCONTROL, el escenario más probable de los movimientos de vuelo IFR en Europa hasta 2035, prevé 14,4 millones de vuelos, lo cual es 50% más que en 2012. [10] El aumento en el tráfico aéreo se está traduciendo en diversos problemas tanto en el lado aire como en tierra. En el lado aire, se hace más evidente en el espacio aéreo circundante a los aeropuertos, donde las llegadas y salidas sirven a un gran número de aviones que están sometidos a diversos problemas logísticos que continuamente hay que resolver para asegurarse de que cada vuelo y pasajero viaje con seguridad y eficiencia hasta su destino final. La presente investigación propone una metodología basada en algoritmos evolutivos para resolver el problema de fusión y secuenciación de un conjunto de aeronaves. Para dicho fin, se realiza un análisis del diseño de la topología de las rutas de aterrizaje. Este enfoque propone para cada aeronave una nueva ruta y perfil de velocidad con el fin de evitar posibles conflictos en los puntos de fusión, mientras que se mantienen las normas de separación de la OACI. La función objetivo se basa en adquirir la desviación mínima de cada aeronave con respecto a su plan de vuelo original. El algoritmo se ha aplicado con éxito en el aeropuerto de Gran Canaria en España con muestras de la demanda de tráfico reales para lo que se ha encontrado una configuración óptima para la alimentación óptima pista.
En inglés
The imminent growing in the Air transport System has forecast diverse scenarios to explore the future of the aviation. According to EUROCONTROL forecast of IFR flight movements in Europe up to 2035, the most likely scenario predicts 14.4 million flights, which is 50% more than in 2012. [10] This increase in the air traffic is translating into diverse problems in the airside and landside. In the airside, it becomes more evident in the airspace surrounding airports, where the arrivals and departures serve a large number of aircraft which are subjected to many logistical problems that must continuously be solved to make sure each flight and passenger travels safely and efficiently. The present research proposes a methodology based on evolutionary algorithms to tackle the merging and sequencing problem of a set of aircraft by analyzing the topology design of the landing routes. It is proposed to merge the arrivals from different routes by changing the topology design of the STARs (Standard Terminal Arrival Route). The approach proposes to each aircraft a new route and speed profile in order to avoid potential conflicts at merging points while maintaining ICAO separation standards. The objective function is based on achieving the minimum deviation of each aircraft from it original flight plan. This algorithm has been successfully applied to Gran Canaria airport in Spain with real traffic demand samples for which conflict free flow merging is produced smoothly with optimal runway feeding.